UDK 512.540+510.5

On constructive nilpotent groups.*

Nazif G. Khisamiev (Ust-Kamenogorsk)

In this talk we obtain a criteria of constructibility of a two-stage nilpotent group and show that a constructivizable two-stage nilpotent torsion-free group is order constructivizable.

Let $\overline{G} = \langle G, \cdot, \leq, e \rangle$ be an ordered group and $\nu : \omega \to G$ be a numbering of the group \overline{G} . The system $\langle \overline{G}, \nu \rangle$ is called a *strongly constructive (constructive) ordered group*, if there exists an algorithm such that for any formula (atomic formula) $\Phi(x_0, \ldots, x_{n-1})$ of the language $L = \langle \cdot, \leq, e \rangle$ and for any numbers m_0, \ldots, m_{n-1} , it determines whether the property $\overline{G} \models \Phi(\nu m_0, \ldots, \nu m_{n-1})$ holds.

An ordered group \overline{G} is called *(strongly) constructivizable*, if there exists a numbering ν such that the system $\langle \overline{G}, \nu \rangle$ is a (strongly) constructive ordered group. A group G is called *(strongly) order constructivizable* if there exist an ordering \leq and a numbering ν such that the system $\langle \overline{G}, \nu \rangle$ is a (strongly) constructive ordered group. In [1], it was proved that every countable abelian torsion-free group, every free nilpotent group, every finitely generated nilpotent group, every finitely generated nilpotent torsion-free group and the group of unitary triangular matrixes over an associative ordered constructive ring with unit element are order constructivizable.

THEOREM 1 Let (G, ν) be a constructive two-stage nilpotent group and B a computably enumerable subgroup of the center Z(G) of the group G such that the quotient group G/B is an abelian torsion-free group. Then there exists a constructive numbering μ of the group G satisfying the following conditions:

1) there exists a computably enumerable basis of the subgroup B;

2) there exists a computably enumerable system of elemets $\{c_i \mid i \in I\}$ in (G, μ) such that the cosets $\{c_i + B\}$ form a basis of the quotient group A/B.

COROLLARY 1 Let (G, ν) be a constructive two-stage nilpotent group and I(G') the isolator of the group commutant. Suppose that I(G') is contained in the center of G. Then there exists a constructive numbering μ of the group G such that the subgroup I(G') is computable in (G, μ) .

>From this result and the results of [1] we obtain

^{*}Supported by Science Foundation of Kazakh Ministry of Education, grant No. 1-1-1.3-1(71).

COROLLARY 2 A constructivizable two-stage nilpotent torsion-free group is order constructivizable.

Assume that abelian groups A, B and a function $f : A \times A \longrightarrow B$ satisfy the following conditions: $A \cap B = \{e\}$, $f(a_0, e) = f(e, a_0) = f(a_0, a_o^{-1}) = f(a_0^{-1}, a_0) = e$, $f(a_0a_1, a_2)f(a_0, a_1) = f(a_0, a_1a_2)f(a_1, a_2), a_i \in A$. We call the function f a system of factors. Define the group G as follows: $G = gr(A, B \mid a_0b_0 = b_0a_0, a_0b_0 \circ a_1b_1 = a_0a_1f(a_0a_1)b_0b_1,$ $a_i \in A, b_i \in B$). The group G is called an extension of the group B by A wrt the system of factors f. It is obvious that if $(A, \nu), (B, \mu)$ are constructive abelian groups and a system of factors f is computable, then the natural numbering γ of the group G defined by ν and μ will be constructive.

COROLLARY 3 Let G be a two-stage nilpotent group and let the isolator of the group commutant be contained in the center of G. Then G is constructivizable if and only if it is isomorphic to an extension of a constructive abelian group by a constructive abelian torsionfree group wrt a computable system of factors.

COROLLARY 4 A two-stage nilpotent torsion-free group is constructivizable if and only if it is isomorphic to an extension of a constructive abelian group by a constructive abelian group wrt a computable system of factors.

>From the results proved in [2] we obtain one condition which follows from constructibility of a nilpotent torsion-free group.

PROPOSITION Let G be a constructive nilpotent torsion-free group. Then there exists a central series of constructivizable subgroups

$$R = G_0 \subseteq G_1 \subseteq \ldots \subseteq G_n = G,$$

such that all quotients G_{n+1}/G_n are constructivizable.

References

- [1] Romankov V.A., Khisamiev N.G. On constructive matrix groups and ordered groups, Algebra i logika, 2004, 3(43), 353-363 (in Russian).
- [2] Khisamiev N.G. Hierarchies of torsion-free abelian groups, Algebra i Logika, 1986, 2(25), 128-142 (in Russian).