JU. L. ERSHOV

MODEL-THEORETIC PROPERTIES OF MULTI-VALUED FIELDS

I. Valued Fields ([1, 2]).

Let F be a field of characteristic 0 and $R \leq F$ be a valuation ring of F, i.e. a subring of F such that for any $a \in F^{\times} = F \setminus \{0\}$ either $a \in R$ or $a^{-1} \in R$. A pair $\langle F, R \rangle$ is called a *valued field* ([1]).

For a valuation ring R we denote by $\mathfrak{m}(R)$ the maximal ideal of R; $F_R \rightleftharpoons R/\mathfrak{m}(R)$ is the residue field; $U(R) \rightleftharpoons R \setminus \mathfrak{m}(R)$ is the unit group of the ring R, $\Gamma_R \rightleftharpoons F^{\times}/U(R)$ is a linearly ordered group (with the order defined via the cone $R^{\times}/U(R) \leq \Gamma_R$), which is called the valuation group (with additive notation); a natural homomorphism $v_R : F^{\times} \to \Gamma_R$ is the valuation, induced by the ring R.

A valuation ring R (valued field $\langle F, R \rangle$) is called a Henselian valuation ring (valued field) if for any unitary polynomial $f \in R[x]$ the following holds: if the image $\overline{f} \in F_R[x]$ has a prime root α then there exists a root $a \in R$ of the polynomial f such that $\alpha = a + \mathfrak{m}/R$.

For any valued field $\mathbb{F} = \langle F, R \rangle$ there exists the least extension $\mathbb{H}_R(F) = \langle H_R(F), H(R) \rangle \geq \mathbb{F}$ which is a Henselian valued field — the *Henselization* of \mathbb{F} .

The absolute ramification index $a_*(R)$ of a ring R is equal to 1 in case when F_R is of characteristic 0, and equal to $n \in \omega$ in case when F_R is of characteristic p > 0 and the set $[0, v_R(p)) \rightleftharpoons \{\gamma | \gamma \in \Gamma_R, 0 \le \gamma < v_R(p)\}$ has cardinality n $(n = |[0, v_R(p))|); a_*(R) = \omega$ in case when F_R is of characteristic p > 0 and the set $[0, v_R(p)]$ is infinite.

THEOREM 1. Let $\langle F, R \rangle \leq \langle F', R' \rangle$ be an extension of Henselian valued fields. If $a_*(R) < \omega$ then this extension is elementary if and only if the induced extensions $F_R \leq F_{R'}$ and $\Gamma_R \leq \Gamma_{R'}$ of the residue fields and valuation groups, respectively, are elementary.

THEOREM 2. Suppose that $\langle F_0, R_0 \rangle$, $\langle F_1, R_1 \rangle$ are Henselian valued fields; $a_*(R_0) < \omega$; $F \leq F_0, F_1$ is a common subfield; $R \leq F, R_0, R_1$ is a common subring such that

$$F = q(R), \ R_0 \cap F = R_{\mathfrak{m}(R_0) \cap R}, \ R_1 \cap F = R_{\mathfrak{m}(R_1) \cap R};$$

 F_{R_0} is a separable extension of $F_{R_0 \cap F}$; $\Gamma_{R_0 \cap F}$ is a pure subgroup of Γ_{R_0} . Then $\langle F_0, R_0 \rangle$ is elementary equivalent to $\langle F_1, R_1 \rangle$ over R, $\langle F_0, R_0 \rangle \equiv_R \langle F_1, R_1 \rangle$, if and only if $F_{R_0} \equiv_R F_{R_1}$ and $\Gamma_{R_0} \equiv_{R^{\times}} \Gamma_{R_1}$.

 Π . Multi-Valued Fields (Boolean Families) ([1, 2]).

A multi-valued field is a pair $\langle F, H \rangle$, where H is a Prüfer subring of the field F (of characteristic 0) such that F = q(H). Recall that a ring H is called *Prüfer* if for any maximal ideal \mathfrak{m} of H ($\mathfrak{m} \in mSpec H$) the residue ring $H_{\mathfrak{m}}$ is a valuation ring. We denote by W(H) the family $\{H_{\mathfrak{m}} | \mathfrak{m} \in mSpec R\}$ of all

valuation rings of the field F. The Zariski topology (Z-topology) on W(H) is defined via the base $U_a \rightleftharpoons \{H_{\mathfrak{m}} | a \notin \mathfrak{m}\}, a \in H^{\times} = H \setminus \{0\}$. Family W(H) is called *Boolean* (near Boolean) if all of the sets $U_a, a \in H^{\times}$, are closed (compact) with respect to Zariski topology. The *C*-topology on W(H) is defined via the subbase $W_n \rightleftharpoons W(H) \setminus U_a, a \in H^{\times}$. If W(H) is Boolean then Z-topology and *C*-topology are equivalent.

A family W(H) is said to have *C*-continuous elementary properties if, for any formula $\varphi(\bar{x})$ of the signature of valued fields and for any tuple \bar{a} , the set $\{R|R \in W(H), \ \mathbb{H}_R(F) \models \varphi(\bar{a})\}$ is *C*-open.

A ring H (family W(H), multi-valued field $\langle F, H \rangle$) is said to satisfy the *local-global arithmetical* principle LG_A if the following holds:

any affine (absolutely irreducible) variety V, defined over F, has a simple H-rational point in case then V has a simple H(R)-rational point for any $R \in W(H)$.

A ring H (family W(H), multi-valued field $\langle F, H \rangle$) is said to satisfy the principle of maximality M if the following holds:

if $f \in F[x]$ is an irreducible polynomial over F and f has a root in $H_R(F)$ for any $R \in W(H)$, then f is linear.

It is natural to consider a multi-valued field $\langle F, H \rangle$ with Boolean family W(H) in the signature expanded by the predicate J distinguishing the Jacobson radical of the ring H.

Let $\langle F, H, J(H) \rangle \leq \langle F', H', J(H') \rangle$ be an extension of multi-valued fields; W(H), W(H') are Boolean families; $a_*(R) < \omega \ (a_*(R') < \omega)$ for any $R \in W(H) \ (R' \in W(H'))$; H(H') satisfies principles LG_A and M, and the local elementary properties of the family $W(H) \ (W(H'))$ are C-continuous. Under these assumptions we have

THEOREM 3. An embedding $\langle F, H, J(H) \rangle \rangle \leq \langle F', H', J(H') \rangle$ is elementary if and only if the induced embeddings of rings $H/J(H) \leq H'/J(H')$ and groups $F^*/U(H) \leq F'^{\times}/U(H')$ are elementary.

Note that the ring H/(J(H)) is a subring of the direct product

$$\prod_{R \in W(H)} F_R$$

of the residue fields, and the group $F^{\times}/U(H)$ is a subgroup of the direct product

$$\prod_{R\in W(H)}\Gamma_R$$

of the valuation groups; from C-continuity of the local elementary properties it follows that the embeddings above are *elementary products* (see $\begin{bmatrix} 1 \end{bmatrix}$).

III. Multi-valued fields

(near Boolean families)([1, 2]).

In this section we consider multi-valued fields $\langle F, H \rangle$ for which W(H) is a near Boolean family. A natural expansion of signature in this case is obtained by adding a symbol for the preorder \sqsubseteq_H , defined on F in the following way: for $a, b \in F$,

$$a \sqsubseteq_H b \rightleftharpoons \forall \mathfrak{m} \in mSpec \ H(a \in \mathfrak{m} \Rightarrow b \in m).$$

Under assumption that H is a Bézout ring (i.e. any finitely generated ideal of H is principal), the partial order induced on $E_H(F) \rightleftharpoons F/\equiv_H$ by the preorder \sqsubseteq_H defines on $E_H(F)$ a structure of distributive lattice with the least element $([1]_H)$ and relative complements.

If the local elementary properties of W(H) are C-continuous then, for any formula $\varphi(\bar{x})$ and tuple $\bar{a} \in F$, we can consider the following ideal of the lattice $E_H(F)$:

$$T^F_{\varphi,\bar{a}} \rightleftharpoons \{ [d]_H | d \in H^{\times}, \forall R \in W_d(\mathbf{H}_R(F) \models \varphi(\bar{a}) \}.$$

Suppose that $\langle F, H, \sqsubseteq_H \rangle \leq \langle F', H', \sqsubseteq_{H'} \rangle$; the local elementary properties of the family W(H) (W(H')) are C-continuous; H(H') satisfies principles LG_A and M (from LG_A it follows that H(H') is a Bézout ring); for any prime p there exists a natural number n_p such that, for any $R \in W(H)(R' \in W(H'))$, if $F_R(F_{R'})$ is of characteristic p, then $a_*(R) \leq n_p$ $(a_*(R') \leq n_p)$. Under these assumptions we have

THEOREM 4. An embedding $\langle F, H, \sqsubseteq_H \rangle \leq \langle F', H', \sqsubseteq' \rangle$ is elementary if and only if the induced embedding of lattices $E_H(F) \leq E_{H'}(F')$ is elementary after expansion of these lattices by ideals $T_{\varphi,\bar{a}}^F$ $(T_{\varphi,\bar{a}}^{F'})$, $\bar{a} \in F$.

We now state the condition of elementary equivalence: let

$$\langle F, H, \sqsubseteq_H \rangle, \quad \langle F', H', \sqsubseteq_{H'} \rangle$$

satisfy assumptions stated for $\langle F, H, \sqsubseteq_H \rangle$ before Theorem 4.

THEOREM 5. Let $F \leq F_0, F_1$ be a common subfield, $H \leq F, H_0, H_1$ is a common subring, such that F = q(H) and for any $R_0 \in W(H_0)$ we have $R \hookrightarrow R_0 \cap F = H_{\mathfrak{m}(R_0)\cap H}, F_{R_0}$ is a separable extension F_R , and Γ_R is a pure subgroup of Γ_{R_0} . If

$$\langle E_{H_0}(F_0), \ T_{\varphi,\bar{a}}^{F_0} | \bar{a} \in H \rangle \equiv \langle E_{H_1}(F_1), T_{\varphi,\bar{a}}^{F_1} | \bar{a} \in H \rangle$$

then $\langle F_0, H_0, \sqsubseteq_{H_0} \rangle \equiv \langle F_1, H_1, \sqsubseteq_{H_1} \rangle$.

IV. Some applications

The theorems obtained above allow us to introduce some new classes of multi-valued fields with decidable theory [3, 4]; to define an analog of Henselization [6] for multi-valued fields; in particular, for fields of algebraic numbers (wonderful extensions [5]) and to use them for effectivization of the global theory of fields of classes [7].

REFERENCES

1. Ershov Ju.L. Multi-valued fields, Nauchnaya Kniga, Novosibirsk, 2000 (in Russian).

2. Ershov Ju.L. Multi-valued fields $\Pi,$ Algebra i Logika, 41, N6 (2002), 682-712 (in Russian).

3. Ershov Ju.L. Nice local-global fields. $\Pi,$ Algebra i Logika, 35, N5 (1996), 503-528 (in Russian).

4. Ershov Ju.L. Nice local-global fields. IV. Sib. Math. Zhurnal, 43, N3(2002), 526-538 (in Russian).

5. Ershov Ju.L. On wonderful extensions of the field of rational numbers, Dokl. RAN, 373, N1 (2000), 15-16 (in Russian).

6. Ershov Ju.L. Preordered multi-valued fields, Dokl. RAN, 382, N5 (2002), 583-588 (in Russian).

7. Ershov Ju.L. Nice extensions and global theory of fields of classes. Dokl. RAN, 388, N 2 (2003), 155-158 (in Russian).