Logical Definition of Object Domain Ontology. *

Dmitry E. Pal'chunov palch@math.nsc.ru Institute of Mathematics, Novosibirsk, Russia

The paper is devoted to a formalization of object domain ontology. Now ontology is very useful tool for different fields of knowledge engineering. However until now there is not a unique common definition of object domain ontology. There are a number of different approaches to ontology definition. Aim of this article is to present a model theoretical definition of object domain ontology.

Let us summarize how various authors define the ontology [1, 2, 3, 4]: ontology is a tool for reality modeling; ontology describes an object domain; knowledge represented by ontology should be intersubjective (it means that different experts in the given object domain should agree with the statements presented in the object domain ontology); ontology should contain specification of senses of object domain key concepts; ontology describes general properties of object domain, not depending of its concrete realizations. We base our formalization on ontology definition presented in [5].

Definition 1. A formal ontology of an object domain O is a pair $\langle S, \sigma \rangle$, where σ is a set of key concepts and S is a set of analytic sentences describing meanings of key concepts.

Actually the set σ is the signature of the object domain. It means that σ contains only symbols of concepts. The set S includes definitions of the symbols containing in σ .

Definition 2. The set T of the sentences that are true in every example of an object domain O will be called as the theory the object domain O, or the object domain theory.

Definition 3. Let a pair $\langle S, \sigma \rangle$ be a formal ontology of an object domain O. The set $T_a = \{\varphi | S \vdash \varphi\}$ is said to be an analytic theory of the object domain O.

Definition 4. Let T be the theory of an object domain O, T_a be the analytic theory of O and S_e be a set of sentences, such that $T = T_a \vee S_e$, i.e. $T = \{\varphi | T_a \cup S_e \vdash \varphi\}$. Then the set S_e is called as a set of heuristics of the given object domain O.

The heuristic set S_e formalizes the special knowledge of the experts in the given object domain.

Definition 5. A deductively closed formal ontology of an object domain O is a pair

^{*}Partially supported by RF Ministry of Education grant "The development of the higher education scientific potential", project 8329, and by the Council for grants under RF President, project NSh-2112.2003.1.

 $\langle T_a, \sigma \rangle$, where σ is a set of (symbols of) key concepts and T_a is a deductively closed set of analytic sentences describing meanings of key concepts.

Definition 6. A formal ontology $\langle S, \sigma \rangle$ is called canonical if:

a) For any $\varphi \in S$ there not exist ψ and ξ such that $\varphi \equiv \psi \& \xi, \sigma(\psi \& \xi) \subseteq \sigma(\varphi), \sigma(\psi) \neq \sigma(\varphi)$ and $\sigma(\xi) \neq \sigma(\varphi)$.

b) For any $\varphi \in S$ and for any ψ if $\varphi \equiv \psi$ then $\sigma(\varphi) \subseteq \sigma(\psi)$.

For ontologies $\langle S, \sigma \rangle$ and $\langle S', \sigma \rangle$ we denote $\langle S, \sigma \rangle \equiv \langle S', \sigma \rangle$, if $S \vdash S'$ and $S' \vdash S$.

Theorem. For any ontology $\langle S, \sigma \rangle$ there exists a canonical ontology

$$\langle S', \sigma \rangle \equiv \langle S, \sigma \rangle$$
.

We call a pair $\langle \sigma, R \rangle$ as a concept net if $R \subseteq \sigma^2$ and R is reflexive and transitive. We say that a concept net $\langle \sigma, R \rangle$ is a representation of an ontology $\langle S, \sigma \rangle$ if for any $p, q \in \sigma$ we have R(p,q) iff $p, q \in \sigma(\varphi)$ for some $\varphi \in S$. We say that a concept net $\langle \sigma, R \rangle$ is a canonical representation of an ontology $\langle S, \sigma \rangle$ if $\langle \sigma, R \rangle$ is a representation of a canonical ontology $\langle S', \sigma \rangle \equiv \langle S, \sigma \rangle$.

Corollary. Every ontology has a canonical representation.

Hypothesis. For any ontology a canonical representation is unique.

Let $\langle \sigma, R \rangle$ be a concept net, $\Delta \subseteq \sigma$ and $p \in \sigma$. A distance $\rho(p, \Delta)$ between p and Δ in $\langle \sigma, R \rangle$ is the minimal number of steps in the graph R from p to some $q \in \Delta$.

Definition 7. A triple $\langle S', \sigma, f \rangle$, where $f : \sigma \to [0, 1]$ is called a fuzzy ontology. A fuzzification of ontology $\langle S, \sigma \rangle$ modulo a set $\Delta \subseteq \sigma$ is a fuzzy ontology $\langle S', \sigma, f \rangle$, where $f(p) = \frac{1}{(\rho(p, \Delta) + 1)}$ for any $p \in \sigma$.

Fuzzy ontology is a useful tool for fine search organizing and knowledge retrieval in Internet. Here $\langle S, \sigma \rangle$ is an object domain ontology and Δ is a set of key words from a search engine query.

References

- Alberts, Lammertus Koos (Mert): YMIR: an ontology for engineering design. University of Twente: Doctoral dissertation, 1993.
- [2] Wielinga, Bob; Schreiber, Guus: Reusable and Shareable Knowledge Bases: A European Perspective. In Kazuhiro Fuchi, Toshio Yokoi (Eds.), Knowledge Build-ing and Knowledge Sharing. Tokyo and Amsterdam: Ohmsha Ltd and IOS Press, 1994, p. 110-120.
- [3] Gruber, Thomas: Towards Principles for the Design of Ontologies used for Knowledge Sharing. In: International Journal of Human-Computer Studies, Vol. 43, No. 5-6, 1995, p. 907-928.

- [4] Mizoguchi, Riichiro: Ontological Engineering. In: Zhong, Ning et al. (Ed.s.): Foundation of the next generation knowledge processing, The 2001 International Conference on Web Intelligence (WI-01), Maebashi City, Japan: Springer Verlag, 2001, p. 44-57.
- [5] Pal'chunov, Dmitri: Logical Methods of Ontology Generation with the Help of GABEK. IV. International GABEK Symposium, Innsbruck 2002, p.17.