ONE ω-INCONSISTENT FORMALIZATION OF SET THEORY
N.V. Belyakin(Novosibirsk)

Let T be a formal system containing $Z F$, whose language include explicitly the arithmetic signature and numerical variables run over ω. Moreover, assume that there are T-formulas of the form $[\psi(\bar{x}), \Delta(Q, \bar{x}, a), a]$, where a is a numerical variable, ψ is a formula of $Z F$-signature (enriched by numerical variables), Δ a formula of the same signature with a predicate variable Q. Other T-formulas are constructed from $Z F$-formulas and formulas described above using propositional connectives and quantifiesover individual variables. We consider these formulas as meaningless combinations of symbols.

We assume that T-axiomatics contains the following axiom schemes:

$$
\begin{gathered}
{\left.[\psi(\bar{x}), \Delta(Q, \bar{x}, a), a]\right|_{0} ^{a} \leftrightarrow \psi(\bar{x}) ;} \\
{\left.[\psi(\bar{x}), \Delta(Q, \bar{x}, a), a]\right|_{b+1} ^{a} \leftrightarrow\left(\left.\Delta\right|_{[\psi(\bar{x}), \Delta(Q, \bar{x}, a), a]]_{b}^{a, b}, b} ^{Q, a}\right) .}
\end{gathered}
$$

Other T-axioms are $Z F$-axioms $Z F$-axiom schemes extended (as well as logical schemes) to arbitrary T-formulas. It is not hard to check that T is inconsistent wrt $Z F+$ (existence of strongly inaccessible cardinals).

Theorem 0.1 The system T is ω-inconsistent.
This fact can be established at metamathematical level. This means that for a suitable T-formula $\varphi(a)$ one can find two metamathematical objects: a formal T-proof of the sentence $\exists a \varphi(a)$ and a primitive recursive function $G(a)$, which construct for a given numeral n a Goedel number of a T-proof of $\neg \varphi(n)$, and this property of the function G can be proved in the recursive arithmetic.

From this fact follows, in particular, that the existence of strongly inaccessible cardinals is refutable in $Z F$.

