ONE ω -INCONSISTENT FORMALIZATION OF SET THEORY N.V. Belyakin(Novosibirsk)

Let T be a formal system containing ZF, whose language include explicitly the arithmetic signature and numerical variables run over ω . Moreover, assume that there are T-formulas of the form $[\psi(\bar{x}), \Delta(Q, \bar{x}, a), a]$, where a is a numerical variable, ψ is a formula of ZF-signature (enriched by numerical variables), Δ a formula of the same signature with a predicate variable Q. Other T-formulas are constructed from ZF-formulas and formulas described above using propositional connectives and quantifiesover individual variables. We consider these formulas as meaningless combinations of symbols.

We assume that T-axiomatics contains the following axiom schemes:

$$\begin{split} [\psi(\overline{x}), \Delta(Q, \overline{x}, a), a]|_{0}^{a} \leftrightarrow \psi(\overline{x}); \\ [\psi(\overline{x}), \Delta(Q, \overline{x}, a), a]|_{b+1}^{a} \leftrightarrow (\Delta|_{[\psi(\overline{x}), \Delta(Q, \overline{x}, a), a]|_{b}^{a}, b}^{Q, a}). \end{split}$$

Other T-axioms are ZF-axioms ZF-axiom schemes extended (as well as logical schemes) to arbitrary T-formulas. It is not hard to check that T is inconsistent wrt ZF+(existence of strongly inaccessible cardinals).

Theorem 0.1 The system T is ω -inconsistent.

This fact can be established at metamathematical level. This means that for a suitable *T*-formula $\varphi(a)$ one can find two metamathematical objects: a formal *T*-proof of the sentence $\exists a\varphi(a)$ and a primitive recursive function G(a), which construct for a given numeral *n* a Goedel number of a *T*-proof of $\neg \varphi(n)$, and this property of the function *G* can be proved in the recursive arithmetic.

From this fact follows, in particular, that the existence of strongly inaccessible cardinals is refutable in ZF.