One approach to Vekua matrix equation and its applications

Miloje Rajović,
Faculty of Mechanical Engineering, Dositejeva 19, 36000 Kraljevo, Serbia and Montenegro
Dragan Dimitrovski, Mathematical Institute, Faculty of Sciences, 91000 Skopje, Macedonija
Marina Milovanović - Aranđelović, Faculty of Mechanical Engineering, 27 marta 80 , 11000 Beograd, Serbia and Montenegro

Abstract. In this paper, the procedure for solving the Vekua type system of partial differential equations, introduced in $[1,2]$, is appiled to determining particle motion equations.

Introduction and results

In $[1,2]$ the following matrix procedure was introduced for solving a Vekua type system of partial differential equations.

2000 MSC: 34A10, 30D50.

Let $A_{i j}(z, \bar{z}), B_{i j}(z, \bar{z}), F_{i j}(z, \bar{z})$ be analytical functions of z and \bar{z} defined in the bounded region of a complex plane.

The system of partial differential equations

$$
\begin{equation*}
\frac{\partial w_{i}}{\partial \bar{z}}=\sum_{j=1}^{n} A_{i j}(z, \bar{z}) w_{j}+\sum_{j=1}^{n} B_{i j}(z, \bar{z}) \overline{w_{j}}+F_{i}(z, \bar{z}) \quad j=1, \ldots, n \tag{1}
\end{equation*}
$$

can be given in the matrix form

$$
\frac{\partial W}{\partial \bar{z}}=A W+B \bar{W}+F
$$

where

$$
\begin{array}{cll}
W=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\cdots \\
w_{n}
\end{array}\right] & \bar{W}=\left[\begin{array}{c}
\overline{w_{1}} \\
w_{2} \\
\cdots \\
\overline{w_{n}}
\end{array}\right] & \frac{\partial W}{\partial \bar{z}}=\left[\begin{array}{c}
\frac{\partial w_{1}}{\partial \bar{z}} \\
\frac{\partial w_{2}}{\partial \bar{z}} \\
\cdots \\
\frac{\partial w_{n}}{\partial \bar{z}}
\end{array}\right] \quad F=\left[\begin{array}{c}
F_{1} \\
F_{2} \\
\cdots \\
F_{n}
\end{array}\right] \\
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
A_{n 1} & A_{n 2} & \cdots & A_{n n}
\end{array}\right] & B=\left[\begin{array}{cccc}
B_{11} & B_{12} & \cdots & B_{1 n} \\
B_{21} & B_{22} & \cdots & B_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
B_{n 1} & B_{n 2} & \cdots & B_{n n}
\end{array}\right] .
\end{array}
$$

Replacement with $W=U \bar{V}$ where U and \bar{V} are matrix colons gives

$$
\frac{\partial W}{\partial \bar{z}}=\frac{\partial U}{\partial \bar{z}} \bar{V}+U \frac{\partial V}{\partial \bar{z}}
$$

which implies

$$
\frac{\partial U}{\partial \bar{z}} \bar{V}+U \frac{\partial V}{\partial \bar{z}}=A U \bar{V}+B \bar{U} V+F
$$

So we have:

$$
\left[\frac{\partial U}{\partial \bar{z}}-A U\right] \bar{V}+\left[U \frac{\partial V}{\partial \bar{z}}-B \bar{U} V-F\right]
$$

If

$$
\frac{\partial U}{\partial \bar{z}}-A(z, \bar{z}) U=0
$$

then solution of the system is reduced to solving a Teodoresku type nonhomogeneous equation:

$$
U \frac{\partial V}{\partial \bar{z}}=B \bar{U} V+F
$$

which can be written as follows

$$
U^{-1} U \frac{\partial V}{\partial \bar{z}}=U^{-1} B \bar{U} V+U^{-1} F
$$

if U is a regular matrix. Replacement with $T=\bar{V}$ gives

$$
\begin{equation*}
\frac{\partial T}{\partial \bar{z}}=U^{-1} B U \bar{T}+U^{-1} F \tag{2}
\end{equation*}
$$

Thus solution of the system (1) is reduced to solving matrix differential equations (2).

An application in Mechanics

Descartes's coordinates x_{1}, x_{2}, x_{3} of the particle position in spatial motion can be expressed with two variables: length of covered distance $-s$ and time elapsed from start of motion t. The problem of determining position coordinates leads us to the following system of six partial differential equations of the first order:

$$
\begin{aligned}
& \frac{\partial x_{1}}{\partial s}=p_{1}(s, t) x_{1}+q_{1}(s, t) x_{2}+g_{1}(s, t) x_{3}+h_{1}(s, t) \\
& \frac{\partial x_{1}}{\partial t}=p_{2}(s, t) x_{1}+q_{2}(s, t) x_{2}+g_{2}(s, t) x_{3}+h_{2}(s, t) \\
& \frac{\partial x_{2}}{\partial s}=p_{3}(s, t) x_{1}+q_{3}(s, t) x_{2}+g_{3}(s, t) x_{3}+h_{3}(s, t) \\
& \frac{\partial x_{2}}{\partial t}=p_{4}(s, t) x_{1}+q_{4}(s, t) x_{2}+g_{4}(s, t) x_{3}+h_{4}(s, t) \\
& \frac{\partial x_{3}}{\partial s}=p_{5}(s, t) x_{1}+q_{5}(s, t) x_{2}+g_{5}(s, t) x_{3}+h_{5}(s, t) \\
& \frac{\partial x_{3}}{\partial t}=p_{6}(s, t) x_{1}+q_{6}(s, t) x_{2}+g_{6}(s, t) x_{3}+h_{6}(s, t)
\end{aligned}
$$

Replacement with $z=s+t i$ and $\bar{z}=s-t i$ from which follows $s=\frac{z+\bar{z}}{2}$ and $t=\frac{z-\bar{z}}{2 i}$ and replacement of

$$
\begin{aligned}
& w_{1}=x_{1}+i x_{2} \\
& w_{2}=x_{2}+i x_{3} \\
& \frac{\partial w_{1}}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial x_{1}}{\partial s}-\frac{\partial x_{2}}{\partial t}+i\left(\frac{\partial x_{1}}{\partial t}+\frac{\partial x_{2}}{\partial s}\right)\right) \\
& \frac{\partial w_{2}}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial x_{2}}{\partial s}-\frac{\partial x_{3}}{\partial t}+i\left(\frac{\partial x_{2}}{\partial t}+\frac{\partial x_{3}}{\partial s}\right)\right)
\end{aligned}
$$

reduces the starting system to the following system:

$$
\begin{aligned}
& \frac{\partial w_{1}}{\partial \bar{z}}=A_{11}(z, \bar{z}) w_{1}+A_{12}(z, \bar{z}) w_{1}+A_{13}(z, \bar{z}) \overline{w_{1}}+A_{14}(z, \bar{z}) \overline{w_{1}}+A_{15}(z, \bar{z}) \\
& \frac{\partial w_{2}}{\partial \bar{z}}=A_{21}(z, \bar{z}) w_{1}+A_{22}(z, \bar{z}) w_{1}+A_{23}(z, \bar{z}) \overline{w_{1}}+A_{24}(z, \bar{z}) \overline{w_{1}}+A_{25}(z, \bar{z})
\end{aligned}
$$

that is of the Vekua type and can be solved using the procedure described in the paper by Dimitrovski and Rajović $[1,2]$ if $A_{i j}$ are analytical functions of $A_{i j}$ and \bar{z} defined in the bounded region of the complex plane.

References

[1] D. Dimitrovski, M. Rajović, On Matrix equation of Vekua, Proc. of $4^{\text {th }}$ Symp. Diff. eq. and Analysis, Ohrid 1994, 105-110.
[2] D. Dimitrovski, M. Rajović, L'idée d'une équation matricelle de Vécua, Int. Symp. on Diff. eq. Plovdiv 1995.
[3] I. N. Vekua, Generalized analytic functions, (in Russian) Nauka, Moscow 1989.
[4] N. P. Vekua, Systems of singular integral equations, (in Russian) Fizmatgiz, Moscow.

