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B craTthe mpencraBiien enquHBIN TEOMETPUUECKUI TIOAXOM [T TIOCTPOEHNS W aHAIN3a PA3SHOCTHBIX CETOK
B 0671aCTSX 1 Ha TOBEPXHOCTAX. KOHCTpYMpOBaHIE CETOK OCYITIECTBISIETCS C TIOMOIITLIO PENTEHNS Y PABHEHIIT
BeapTpamu B 06macTsaX ¢ MeTPHKOI, BBHIGOP KOTOPOM TO3BOISET 5>(PGEKTUBHO OCYIECTBIATH YIPaBIEHNE
KadeCTBOM CETOK.

The paper gives an account of the geometrization of the studies of the comprehensive grid method proposed
by the author [1] and described in detail in [2]. Tt also presents an important extension of the method by
developing some procedures for the construction of metric tensors aimed at facilitating the generation of the
structured grids with required quality properties. The paper applies some of the relations of the Riemannian
geometry [2 — 5] to obtaining new equations for generating grids with prescribed properties. Taking advantage
of the relations established, the equations are converted into a compact form convenient for the numerical
treatment by available algorithms. Studies of the behavior of the coordinate lines near boundary segments
of the monitor surfaces and physical domains are carried out. Some relations of the mean curvatures of the
monitor surfaces to the Beltramian equations for grid generation are exhibited.

1. Formulation of Comprehensive Grid Generator

1.1. Mathematical Model

A mathematical model which is claimed to be the foundation of a robust comprehensive grid generator should

satisfy the following fundamental properties:

1. well posedness of the mathematical problem formulated by this model for the grid generator,

2. independence of the grid construction of a parametrization of the geometry,

3. malleability (tractability) to a numerical implementation into an automatic code,

4. existence of a straightforward means for efficient control of the grid quality,

5. ability to obtain in a unified manner the domain and surface grids required in practice.
One worthy representative of a mathematical tool to formulate such model is the operator of Beltrami.
The operator is formulated on a set of twice differentiable vector-valued functions f(x) defined on an arbitrary

Riemannian manifold M™ with a covariant metric tensor ¢ in some local coordinates z;, ¢ = 1,...,n, by the
formula L s O (x)
: x
Aplf) = L0 (Y ¥
plf] T 0, VT (L.1)
where x = (z1,...,%,), ¢* = det{g};}, giF is a contravariant metric tensor of the manifold in the coordinates
xi, t=1,...,n.

Here and further we hold a convention that a summation is carried out over repeated indices undess otherwise
noted. Tt is well-known that the formula (1.1) is the invariant of parametrizations of the manifold M™.

The Beltramian operator allows one to formulate a mathematical model for generating grids on arbitrary
Riemannian manifolds with twice differentiable local metric tensors. Let M™ be such n-dimensional manifold
with the metric tensor gf; in the local coordinates s;, ¢ = 1,...,n, whose values lie in some simply connected
parametrization domain S” C R™. Thus there is a map r(s) : S — M"™. By the general definition, a local
structured grid in M” 1s found by mapping a reference grid in a standard logical domain =" into X™ by the
composition of r(s) and some one-to-one intermediate smooth transformation

s():E" =857, €=(&,...,&), s=(s1,---,5n),
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i.e. by r(s(€)) : E® — M"™. Note the parametrization r(s) also generates a grid in M”™ by mapping some reference
grid in S™. However, this grid may be unsatisfactory and as a rule it is not independent of parametrizations.
Besides this, if the geometry of S” is complex, the reference grid in S” may require serious efforts to its
generation. The role of the intermediate transformation s(€) is to make the grid on M" satisfy the necessary
properties, in particular, the property of independence of the choice of a parametrization. While the role
of the logical domain =" is to replace the parametrization domain S” with a standard parametric domain
(n-dimensional cube, simplex, prism, etc) having a simple shape.

The logical domain =", its reference grid, and the parametrization r(s) are chosen by the user. Therefore
the local grid in M"™ with required properties is defined if a suitable intermediate transformation s(£) is found.
One of the ways to find this transformation is to use the operator of Beltrami. Namely s(£€) can be determined
as the inverse of the transformation

§(s): 5" = =", &(s) = (&u(s), - &n(s))

which is a solution of the boundary value problem

_ 19 < ik 98 _ ——
AB[€] = \/—g—sg(\/g_gg @)_Oa jak_laana
F[g] = €|3S" = ‘P(S) 108" — 0= ) QO(S) = (@1(5), .- ,QDH(S)) )

or in a component form

1 0 . 0&;
1 = [8 gl k 250
AB [gl] — \/g—s 68] ( g gs 85k

L&l = &lose=wils), i=1,...,n,

where 95" and JZ" is the boundary of S™ and 2", respectively, while ¢(s) is a one-to-one continuous transfor-
mation between the boundaries of S™ and E". The coordinates &1, ..., &,, satisfying (1.2), are further referred
to as grid coordinates.

Since Ap[€] is independent of parametrizations of M" we obtain that the system (1.2) is equivalent to the
following system

):0, iik=1,...n,
(1.2)

L0 [ e -
AB[gl] = —¥( ggg‘é)zo’ l,_]:l,...,n,
NT (1.3)
L&l = &Glasn=wils), i=1,...,n,
where (g‘g), 0, =1,...,n, is the contravariant metric tensor of M" in the coordinates &;1,...,&,,

Js; 9¢; ) .

ggzjzgs, J:det(ﬁgj)zl/det(ﬁsj

1.1.1. Realization of Volume and Surface Grids

Grids in Domains. Let M™ be an n-dimensional domain X" of the Eucledian space R™ which has a local
structured grid obtained with the aid of a one-to-one nondegenerate smooth transformation (diffeomorphism)

x(€) 2" =5 X", x=(21,...,20), E=1(&,...,&), (1.4)

i.e. the local structured grid in X™ is the image of a reference grid in 2" into X" by x(&). Let S™ be the image
of the domain E” in X" by x(&). Then S™ can be formally considered as a local parametric domain of X™ with
the coordinates s; = x;, ¢ =1,...,n. Let

r(s):S" =R, vr=(r1,...,rn), S$={(81,...,5n)
be the parametric transformation introducing the coordinates s;, i =1,...,n,in X7, i.e.
r(s) = €(s) for s=x

where €(x) is the inverse of x(€) : B

t=1,...,n, by
s _6&%

i = Vs, ' Ts

— 57, Now imposing in X" a local metric in the coordinates s;,

jl=1

= 1.
T Os; Osj h ’ (15)

gy
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we readily find

0¢;

s __ 2 _ 3 <.

g =J", J_det(ﬁsj)’ L,j=1,...,n,
o 0s; O0s;

2 Ll dil=1,...,n.

=T oa oy

Therefore, applying the equations in (1.2) to the corresponding components of the function &(s), which is the
inverse of (1.4) with s = x, we obtain

1 0 . 0&; 1 9 0s; Osy 0&;

A ;] = _— s,k — . s %) 778
5léi] N (Vg_gs 35k) ¢g—sasj( 7" 9¢ o€, 35k)
1 0 Js;

= ——(J=2L)=0 ik l=1,... n.

\/‘g_s 88] ( 8€Z ) bl Z’ .7’ bl bl bl n

Thus the transformation (1.4) can be obtained as the inverse of the solution of the boundary value problem

(1.2) with the metric (1.5) and the boundary condition (s) = &(s), s € 9S™.

Example of a Metric Deriving Classical Polar Coordinates. In particular, for the polar system of grid
lines
T=pcose, y=psing,

we find, assuming x = s1, y = s2, p = &1, ¢ = &2,

where p = 1/(s1)% 4 (s2)2. So, since (1.5), the elements of the corresponding metric covariant and contravariant
tensors in the coordinates s, ss, are as follows:

S 65 65 STt s P
ijzﬁsi.ﬁ_«‘?j:g[6j+5i5j(1_g)]’ hi=12,
o Js; Os; .

L — 27 — 4 S _¢.g. —g° ] —
95" = 3¢, e, 6;/9% —sisi(1—¢%), 4,j=1,2,

where g° = det(g5;) = 1/((s1)? + (s2)?) = 1/p?. We readily see that this metric is considerably different from
the Eucledian metric.

The formula of the metric realizing the polar coordinate system through the solution of the Beltrami equa-
tions prompts one on how to specify more general metrics in a domain or surface M”. Namely let (g;;),
i,j=1,...,n,and (¢"),i,j = 1,...,n, be any covariant and contravariant metric tensor, respectively, of M"
in the coordinates s1,...,s,. Then three smooth functions fi(s), f2(s), f(s) define the following new covariant
and contravariant metric tensors (g;;) and (79), respectively, of M” in the coordinates s1,...,s, :

Gij :flgij+f2§_£5_£ ;o Lj=1000n,
gii = Lgii _ygim 98 p OF
f1 88m 881,

where
N - B
flfi+ V)]
_Laroer
V(f)— ]852'8_8]" Zaj_la"'an~

Note the functions fi, f2, and f must be such that f; > 0 and det(g;;) # 0.
The metric tensors g7; and g% in the coordinates s;,ss, considered above for generating polar coordinate

system are realized by the metric tensors g;; and 77, i, j = 1,2, respectively, with Gi; = g4 = (5}, 1,7 =1,2,

1 1 1 1
= —, :—1——)’ :—2,
J1 e J2 pz( = F=5r
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1.2. Application to Adaptive Grid Generation

Here we discuss a relation of the operator of Beltrami to adaptive grid generation.

General Concept. In accordance with a concept of Eiseman (1987) adaptive grids in a domain X™ or on a
surface S*” C R™* can be generated by projecting quasiuniform grids from a monitor Riemannian manifold
(monitor hypersurface) defined as an n-dimensional graph of the values of some generally vector-valued function
over X" or S77, respectively. One of the techniques realizing this concept i1s based on the generation of
quasiuniform grids on the monitor hypersurface with the use of a smoothness functional, suggested in [1], which
generalizes the functional introduced in [6] for generating fixed grids in domains. Since the Euler-Lagrange
equations for the smoothness functional are equivalent to the Beltrami equations (1.2) this technique produces
the very grids obtained by the comprehensive grid generator proposed above.

Generation of Adaptive Grids in Domains. In the case, important for the generation of adaptive grids
in a physical domain X" C R", the hypersurface is defined as an n-dimensional monitor surface S™" formed by
the values of some monitor vector-valued function

f(x): X" 5 RY | x=(r1,...,2,), f=[A(x),..., c(x)], (1.6)

over X". Thus the monitor surface S™ is the subset of the (n + k)-dimensional space R"** and whose points
are (x1,...,&n, f1(X),..., f5(x)), x = (21,...,2,) € X™. Tt is apparent that for the parametric domain S”
there can be taken the domain X" and, consequently, the parametric mapping r(s) : S® — R"** is defined as

r(s) =[s,f(s)] =[s1,...,80, f1(s), ..., fr(s)] , S=X. (1.7)

If S™ is a monitor surface over the domain S™ formed by the values of a vector-valued function f(s) then
it is obvious that the intermediate transformation s(€) found by (1.2) or (1.3) produces, in fact, the very
adaptive grid in S™ determined by projecting the quasiuniform grid from S””. This adaptive grid provides node
concentration in the zones of large variation of f(s).

Note that if the transformation (1.6) is a one-to-one nondegenerate one, which may be possible only when
n = k, then this very transformation can also be considered as a parametrization of the image of X™ by f(x),
ier(s)=1(s), s=x.

Generation of Adaptive Grids on Surfaces. When the monitor surface is formed by the values of the func-
tion f(x) over a general n-dimensional surface S** lying in the space R"*! and represented by the parametriza-
tion

x(s): 5" = R | x(s) = [x1(8), ..., ®nyi(s)]

from an n-dimensional parametric domain S? € R” then the monitor surface S™ can be described by a
parametrization from S™ in the form

r(s) : S" — RMHHR r(s) = {x(s),f[x(s)]} . (1.8)

In particular, a one-dimensional monitor surface S™' over a curve S lying in R and represented by x(s) :
[a,b] = R™, can be defined by the parametrization

v(s) : [a,b] = R*TH r(s) = {x(s),f[x(s)]} .

It is evident that the adaptive grid on the surface S"” obtained by projecting the quasiuniform grid from
S7 is formed, in fact, by mapping a reference grid in E” with a composition of x(s) and the intermediate grid
transformation s(§), i.e. with x(s(§)) : 2" — S*".

1.2.1. General Conclusion

Thus the Beltramian operator is a universal tool whose implementation in the grid technology will allow one
to generate in a unified manner a required structured grid both in an arbitrary domain and on its boundary
surface. So the 5th requirement of the mathematical model (1.2) is held. The metric tensor serves as a means to
control the grid quality in this model, hence the 4th requirement is also satisfied. The boundary value problem
(1.2) is well posed and malleable to a numerical implementation. The independence of the grid of the choice of
a parametrization is the inherent attribute of the operator of Beltrami. So the requirements 1-5 imposed above
are held by the mathematical model (1.2).
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Note the value of any grid generation method 1s commonly judged by its ability to rule out the construction of
unfolded grids in domains or on surfaces with arbitrary geometry. In the case n = 2 the mathematical foundation
of this requirement for the technique based on the Beltramian system (1.2) is solid when the computation domain
=? is convex. It is founded on the following result, derived from a theorem of Rado.

Let M? be a simply connected bounded Riemannian manifold. In this case, the Jacobian of the transfor-
mation £(s) generated by the system (1.2) does not vanish in the interior of S?, if Z? is a convex domain and
£(s) : 0S? — 9= is a homeomorphism.

It is likely that the similar result is valid for the three-dimensional geometries, though it has not been proved
so far.

Therefore the model formulated is really a promising approach for the development of a comprehensive grid

generation code.

2. Grid Equations with Respect to Intermediate Transformations

Here we establish some equivalent forms of the comprehensive grid equations (1.2) with respect to the interme-
diate transformation s(&).

2.1. General Grid Equations

A general form of the grid equations with respect to the intermediate transformation s(§) and an arbitrary
metric in a Riemannian manifold X" is obtained after multiplying the system (1.2) by 9s;/9¢;. Indeed this

multiplication yields
s 0k ?
(\/g_ 93 85;)

1 90

9 951
VE Os; 9¢;
1

= = (G V) = Vi
= AB[Sl]

i O0%si O 35m)

s 3&3&,1 38k 35j
im O%si

~ 98 9806,

Therefore we have the following system of the comprehensive grid equations with respect to the functions s; (&),

1=1,...,n,

Oa iaj,k,l,mzl,...,n.

gim 6251
£ 9606
Since the value of the Beltramian operator is independent of the choice of parametrizations we also find from

(2.1)

=Aglst)], dm=1,... n. (2.1)

im

625! _ 1 0 & 881 . B
€ B¢06, \/7@(\/9?951)%) ;o Lk Imp=1,...n. (2.2)

Analogously we find the following equivalent expression for the grid equations (1.2) in the case of the
parametrizations (1.7) or (1.8)

ggj(rﬁmﬁj'rﬁl)’ jalam:1a~~~an~ (23)

2.1.1. Grid Equations in the Case of the Monitor Surface over a Domain

If the Riemannian manifold is the monitor surface S™ over a domain X" formed by a vector-valued monitor
function f(x) = (f1(x),..., fn(x)), i.e. the parametrization of S™ is determined by (1.7), then, in the grid
coordinates &1, . ..,&,, we obtain, assuming s = x,

vene; = (Seneinfene), Jm=1,...n,
rﬁl:(sﬁzafﬁl), lZl,...,n,

where
L s
s T 9,06

Therefore (2.3), in this case, is as follows:

{,m=

bl

mj

Ie (Sene; S +Hee, £e,) =0, jlm=1,...n,
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and the multiplication of this system by 9¢;/0s; yields the following grid system, with respect to s;(€), i =

1,...,n,
i(_9si
g’”( H A - fsl):o, ijm=1,...,n, (2.4)
§ \9¢0¢;
where f;, = 65[[5], =1,...,n. Note, if &,...,&,, are the coordinates satisfying (1.2) and consequently (1.3)
54
then

g]aga;gg]_\/?ag](\/»%mggp)_ Ap(fy), jm=1...n, p=1..k,

so the system (2.4) also has the following forms

A (52)+AB(fp)8fp:0’ izl""ana pzla"'aka (25)
or 52 of
mj 9 % g _ iom = =
9¢ 3€m3€j+AB(ﬁ)3si 0, é¢jm=1,....n, I=1..k, (2.6)

Remind Ag(f,) is independent of a parametrization of S therefore it can be computed through an arbitrary
coordinate system, in particular, (1.7).
2.1.2. Grid Equations in the Case of the Monitor Surface over a Surface

If the monitor surface S”” over a surface S™” | represented by
x(s) : S™ — R x = (21,..., Tagn,)

is formed by a monitor function f(x) = (f1(x),..., fx(x)) with the parametrization (1.8) then, in the grid
coordinates &1, ...,&,,

ve,e; = (Xenei fene) . Jm=1....n,

I‘gl:(Xgl,fgl), l:l,...,n

and consequently the grid equations (2.3) are as follows:

ggf'(x§m§j xg + e fe)=0, jlm=1,...n. (2.7)
S
e b 0x 05, Ox Osg
Xembs " Xe = _(__p)
e ! 3€m 38p 357 38(1 3&
9%s 9%x 0x Osp Osp \ Osq . B
- (6€m8€]gap+aspasb'£6_&6€.7)a—&a aabajalamap_la"'ana

we obtain, after multiplying the system (2.7) by (9¢;/9ss)g%,

mj gl i
g€](X§msj xg, e, 'fsz)3 9%,

mi 8282' ; : i -
= g€] (6€m8€] +f§m§j 'beggl‘) +g§](xspsj ’ Xsb)ggx =0, biylm=1,...n

Thus the grid system with respect to s;(&), ¢ = 1,...,n, has the following form

2 .
gg](6€m8€] +f§m§] fsbgglx) p] T;] ’ balajam;p: 1,...,71 s (28)
where "Téj is the Christoffel symbol of the second kind of the surface S*" in the coordinates sy, ..., s, [2].

Note ' '
i =g"(rs,s; vy, GG Lp=1,..n
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Analogously to (2.6) we get, in the grid coordinates &1,...,&,,

0 ; X g .
—|—AB(fl)8—ig§Zx:—g’S’] T, bijmp=1..n, I=1..k. (2.9)

mj 82 S5
g
£ 36n0%;

Equations (2.9) in comparison with the equations (2.4), prescribed for generating grids in domains, are more
complicated. They also are less malleable for implementation in a numerical code in the case when the process
of grid generation on a surface S*" is coupled with the computation of this surface, since the quantity "Téj
includes the second derivatives with respect to s;, i = 1,...,n, of the surface parametrization x(s). However,
we can come to the equations of the form (2.4) for generating grids on the surface S*" if we consider as the
monitor function over S*” a function fi(s) = (s, f[x(s)]). Then the monitor surface S™" over S with this
monitor function is represented by the parametrization

ri(s): 8" = S ri(s) = (x(s), s, £x(s)]) .

Note the monitor surface S™" over S™ with the monitor function fa(s) = (x(s),f[x(s)]), and represented
correspondently by

ra(s) : 8™ = 8™ | ra(s) = (s,x(s),fx(s)])

has the same metric tensor as the surface S™". Hence the equations for generating the intermediate trans-
formation s(&) : 2" — S™ with these monitor surfaces are identical and have, in accordance with (2.4), the
following form

9%
mj 7 _ .. _
——— + X¢, X f »f)_O, tjym=1,....m, 2.10
9¢ (8&”8@» + Xeme; X, e s, J (2.10)
where (ggj) is the contravariant metric tensor of the surface S™2" in the coordinates &1, ...,&,. Note, for the

covarlant metric tensor of S™" we have

¢ _ 0s(&) 0s(8)  Ox[s()] 0Ox[s(O)] | Hix[s(@]} o {x[s(€)]}

gi._ s i,j:l,...,n.
J o0& 0§ 0&; 0&; 0&; 0&;
Equations (2.10) with respect to the components s;(&), i = 1,..., n, of the intermediate transformation s(&)
include the first derivatives only of the functions s(&) and f[x(s)] in s;, ¢ = 1,..., n, therefore they are more

convenient for implementation in a numerical code in comparison with the equations (2.9). Remind, the grid
in S”" is obtained by mapping with x(s) a grid in S™ generated through s(&).

Note that, similarly to (2.5), the equations (2.10) also have the following form
Ox; afl

85j + Aglfi]

Apgls;] + Aglz;] =0, i=1,...,n, j=1,....n4+ny, I=1,... k.

882' o ’
2.1.3. Role of Mean Curvature in the Grid Equations for Domains

In the case of the metric tensor (g7;) defined by the parametrization (1.7) as g5; = vy, - 15, i, = 1,...,n, we
have

AB[t‘;l] == _glswrric] = _gsjglsm(rsij . rsm) ; j,k,l,m = 1a RS [0

Let r(s) be specified by (1.7) with a scalar-valued monitor function f(s). Then S™ C R"*! and we readily find

m 1 1 1
gls fom = (6£n - _stlfsm)fsm =Js (1 - _stmfsm) = _Sf81 ;o Lm=1...,n, (2.11)
g g g
and, consequently,
ki im Loy .
AB[Sl]:_gs gs fsksj'fsm :_g_sgs fsksj'fsl ; jakalamzla"'an' (212)
Now remind that the quantity

. Iy .
[\/m:§g§]r8k8j'na _],]{7:1,...,71,
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where n is the (n + 1)-dimensional unit normal vector to S™ in R"*!  is the mean curvature of the monitor
surface S™. Note the mean curvature is the invariant of parametrizations of S™". Since, in our case,

vy, =(0,...,0,1,0,...,0,f.,), i=1,...,n,

N——’
i—1 n—i

so 1t 1s obvious that )
n= —(_f51""’_f5n’1) .

NS
Therefore

1 )
I‘Sij.n:\/?fSij’ _],]{7:1,...,71,

and consequently

. 1 ; .
[X/m:—glsc]fmcs]'a _],]{7:1,...,71.

v

So equations (2.1) have the following form

2
Ap[s] = ———=Kmfo, l=1,....n. 2.13
N : (2.13)
Thus the grid equations (1.43) for a domain X” = S™ with a scalar monitor function f(x) are expressed through
the mean curvature of S™ as follows:
8281 2

ij o8 _ 2 g
g€ 6&’2667 \/g—S[xmfsl ) Za]al 1a"'an . (214)

3. Properties of the Coordinate Lines

In this section we establish some relations between the qualitative properties of the coordinate lines generated
by the comprehensive grid system (1.2) and the form of monitor functions and geometry characteristics of the
physical domain or surface undergoing the gridding process.

3.1. Behavior near Boundary Segments

We consider here an arbitrary surface S, n = 2,3, locally represented by a parametrization of the form
v(s):S" 5 R v =(r, . ragk), s=(s1,...,8.), k>0, n>0,

and whose covariant metric tensor (gfj) in the coordinates s;, ¢ =1, ..., n, is defined through such parametriza-
tion as follows:
s .
gij_I‘Sz'I‘Sja Zaj_la"'an'

We also assume that the logical domain Z" in the boundary value problem (1.2) formulated for generating

grids on S™ is the standard unit cube, i.e. 0 < & < 1,¢=1,...,n. Besides this, let the (n-1)-dimensional
boundary plane & = 0 or § = 1 of =" for some ¢, 1 < ¢ < n, is mapped into the boundary of S™". It is
well-known [2,4] that when S™ for n = 2 and n = 3 is a domain with the Eucledian metric then the operator of
Beltrami is the Laplace operator and the spacing between the (n-1)-dimensional coordinate surfaces & = const
in S”™ increases near a boundary segment if it is convex and, conversly, the spacing decreases when the boundary
segment in concave. It occurs that this is also valid in the case of the Riemannian manifold S for n = 2 and
n=3J.

3.1.1. Two-Dimensional Case

Rate of Change of the Coordinate Line Spacing near Boundary Segments of a Monitor Surface.
Let &1, &5 be an arbitrary coordinate system of a two-dimensional monitor surface S™? (not necessarily satisfying
(1.2)). We first consider in the surface S™2 a family of the coordinate lines £ = const. Note the unit vector ns
lying in the tangent plane to S7? and which is orthogonal to the line 5 = ¢q is expressed in the form

n, = (g?/\/g?)rgl L i=1,2. (3.1)
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Let us denote by {5, the distance between the two coordinate lines £ = ¢y and €5 = ¢g + h in S™2. We have

Ih =y re,)h+ O(h —h(g /\/>)I‘§l re, + O(h —h/\/>-|—0

So the quantity 1/ /g%2 reflects the relative spacing between the coordinate grid lines &, = ¢g + £ and &3 = ¢g
in S72.

The vector ns is orthogonal to the coordinate line &5 = ¢, and therefore the rate of change of the relative
spacing 1/ g? of the coordinate curves £; = const near this line is its derivative in the ny direction. Using

(3.1) we obtain

i ! — 1 21 2[ . _
dnz( ggz) (g2 9 )29595 ;o LlLk=1,2. (3.2)

Note this equation 1s valid for an arbitrary coordinate system &;1,&;. We also have in an arbitrary coordinate

system &1, &> the following relation

20~ 2
9g9¢ Xl

202 2l 2
9 9¢ Yz + 9 9 T

= 95 95 i ‘1‘95 95 - 95 95 ‘T
= 95 95 "7+ Tu[ﬂg 95 g%zgg]

TZ
22 ki 9211 22 kin2z 111
= 9g9¢ T + Tn[ﬂg 95 9e ¢ 1= 9¢ ¢ Tik g‘s .

So, taking into account (3.2), and (3.3), we obtain that the rate of change of the relative spacing of the family
of the coordinate lines & = const of an arbitrary grid system &;, &, in S7? is expressed as follows:

d 1 1 i~ 1 9
() = BT Y2 h=1,2. (3.4)
dnz( g?) g? § g€(g%2)2

Similarly, for the family of the coordinate lines &5 = const, its rate of change of the relative spacing has the
form

d ;1 N I
() = gk, - YL, ki=1,2, (3.5)
dnl( gg) €1 13 gg(gg)z

where '
= (987, Jog Jre. . i=12,

is the unit vector orthogonal to the boundary line &; = ¢ in S"2.

Rate of Change of the Grid Line Spacing near Boundary Segments of a Monitor Surface. Let
now &1, &s be the grid coordinate system, i.e. it is obtained by the solution of the system (1.2) with n = 2. Then
the elements of the contravariant metric tensor and the Christoffel symbols satisfy the grid equations [2,5]

9P =0, ikj=12.

43
Taking into account these equations we find from (3.5) at the points (cg, £2)
d 1 1
— ) =T, . (3.6)
dnl( 11) & 112 22
95 g (95)

Similarly we find at the points (€1, ¢g) from (3.4)

d 1 1
d—nz( g?) - _g€(g%2)zT%1 ’ (3.7)
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Availing us of the identities

Té—lS—l = glgm (I‘ﬁa—lﬁa—z 'I‘ﬁm) = \/gg(rﬁa—zﬁa—z 'nl) , ILm=1,2, (38)

where the repeating index ! is fixed (the summation is over m only), we find that the above equations (3.6) and
(3.7) give rise to one more system of two-dimensional grid equations

dd ( ! ) - 1‘5252 ) )

n; gél / gél (3 9)
dd ( ! ) = 1‘5151 ) . .
N3 gg,/ (9¢")°

Replacement of the coordinate £5_; by the arc length coordinate s, which are related as
ds
s VoS, 1=12, 1 — fixed

Yoo 6o, -1y = g§_l3_l(rss ), [=1,2, [ — fixed.

yields

The quantity o; = r,, - n; is the geodesic curvature of the coordinate line & = const in the surface S™? and is
invariant of its parametrizations. It is obvious from (3.8) that

I
01 = (Ygy_yg5_, M /93 3= ——F VY33, (=12,

\/Y 93 13—1

with ! fixed. Therefore the equations (3.9) are identical to

d /1 1
_(_) =0, 1=1,2, fixed . (3.10)
AV

Thus if the geodesic curvature o; of the boundary curve & = 0 in S7? is negative (positive) then

d /1
—( )>0(<0), [=1,2 fixed .
dny gg

This means that the coordinate lines £ = const obtained through (1.2) cluster near the boundary curve & = 0
if oy < 0 and vice versa the coordinate lines become sparser when approaching the curve & = 0 if o7 > 0.
Note the sign of the geodesic curvature indicates the convexity (o; > 0) or concavity (o; < 0) of the boundary
curve & = 0 in S7?, while the condition o; = 0 means that the coordinate line & = 0 is a geodesic line in S"2.
Analogous results are held for the lines & = 1,1 =1, 2.

So we conclude, finally, that the grid lines obtained from (1.2) are repelled from the convex segments of the
boundary lines of S7? and attracted to their concave segments. control the grid spacing near the boundary of

S2.
3.1.2. Three-Dimensional Case

In the case of a three-dimensional monitor surface S™3 defined by (1.7) the normal n3 to the surface &5 = const
in S™ is defined, analogously to (3.1), as follows:

ng = (g%i/\/g?)rgl . i=1,2,3. (3.11)
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Further

1 kl
g?TZl = g33 [g%?)gg TZl]
1 3l 3l 32 3l

= @[9?95 T+ (g%?’gg - g?ﬂg )13, + (9239? —9¢ g )T3]

L sk sies 33 11 31 _31\~n3 33 12 31 _32\An3
= @[95 95 Ti + (95 95 - 95 95 )T+ 2(95 95 - 95 95 )TTs (3.12)
32,32

Hog'ag' — ag 9g) 5]

1 1
= gﬁ[g%kg%lrrzl—i__g(g?gZT?l _2g1€2T?2 +g1€1T22)] ’ kal: 1a2a3a
& g
The two-dimensional surface &3 = const lying in S”3 has a natural covariant metric tensor

gi=g5, ij=12,
and, consequently, the elements of its contravariant metric tensor (g%/) are defined as follows:
g9 = (1) gs_s5_;/det(gi;), 4,j=1,2.
It is apparent that
g€ = det(gz'j)/g%?’ , 4i=1,2,

therefore N o
97 = (=) gasiai/(456F) . ii=12. (3.13)

Note the equation ¢/ = gg, i,j = 1,2, is not valid, in general. Thus, from (3.12) we find

1 i ..
9 Vo= —zslog 9¢ Th+9gg" 5], ij=12, ki=123. (3.14)
7€
Since J ) )
3i 313 .
() = Y il=123,
dns g%:s (98)? £7¢
equations (3.14) are equivalent to
y d 1
ki3 i3 33 % ;g —
gETh = 40 + g dng(—g%) L ij=1,2, ki=1,23. (3.15)
§
So if the transformation £€(s) is defined through (1.2) then we get from (3.15)
d ( 1 ) L iines .
= ) = -5 Y =12, (3.16)
dng g%:s g€ J
Note that the quantity
1 1 -
[{737’7, = 5—33g”T?J 3 Za.] = 1a2a
V7€

is the mean curvature of the surface &5 = const in S™®. So (3.16) yields

ding,( ;%3) - —\/%K; .

Similar equations are valid for the coordinate surfaces & = const, i = 1, 2.

Thus we conclude, analogously to the two-dimensional case considered above, that the grid surfaces obtained
from (1.2) are repelled from the boundary segment whose mean curvature in S”3 is positive and attracted to it
if its mean curvature in S™ is negative.
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3.2. Numerical Experiment

As a confirmation of the robustness of the grid technology described above we demonstrate an example of the
generation of a two-dimensional grid by equations (2.6). The numerical algorithm is based on the iterative
scheme of fractional steps [7]. As an initial grid there was taken a grid whose all interior points coincide
with a single point. The monitor function has large gradients near the corner points of the domain. Figure 1
demonstrates the grid obtained after 5, 100, and 1000 iterations.

5 - iterations 100 - iterations 1000 - iterations

7/

,ﬁf
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[
/
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iy
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B

Fig. 1. Steps of grid evolution.
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