ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ВЫСОКОСКОРОСТНОГО ВЗАИМОДЕЙСТВИЯ ТЕЛ С УЧЕТОМ МОДЕЛИ РАЗРУШЕНИЯ ЭРОЗИОННОГО ТИПА

С. А. ЗЕЛЕПУГИН Отдел структурной макрокинетики ТНЦ СО РАН Томск, Россия

The problem of high-velocity interaction of a group of several identical cylindrical bodies with a target is considered. Numerical simulation of damage accumulation in a sample is performed with an application of kinetic model of fracture. As a criterion of eroding failure of material having place in the field of intensive interaction and deformation of contacting bodies, the critical value of specific energy of shear deformations is used.

Введение

Одной из сложнейших задач механики сплошной среды является исследование процессов взаимодействия нескольких тел с препятствием в условиях высокоскоростного ударного нагружения. Как в экспериментальном, так и в теоретическом плане проблемам группового удара до сих пор уделялось крайне мало внимания в силу больших материальных затрат на реализацию. В [1, 2] численно исследовались особенности процессов соударения двух тел с пластиной в двумерной плоско-деформационной постановке и было показано взаимное влияние высокоскоростных частиц на конечный результат взаимодействия. Однако численное моделирование в плоской постановке особенно заключительных стадий деформирования и разрушения может давать результаты, качественно отличающиеся от наблюдаемых трехмерных экспериментов [3]. В данной работе процессы высокоскоростного взаимодействия нескольких компактных тел с преградой исследуются численно в трехмерной постановке. Рассмотрено симметричное и несимметричное, синхронное и разновременное взаимодействие двух, трех и четырех частиц с преградой конечной толщины с начальной скоростью удара порядка 3000 м/с. Для описания разрушения материала тел в области значительных пластических деформаций применялась модель разрушения эрозионного типа [4, 5].

Постановка задачи и описание результатов

Для численного моделирования процессов высокоскоростного ударного нагружения используется модель повреждаемой среды, характеризующаяся наличием микрополостей (пор, трещин). Общий объем среды W составляют неповрежденная часть среды, занимающая объем W_s и характеризующаяся плотностью ρ_s и микрополости, занимающие объем W_f , в которых плотность полагается равной нулю. Средняя плотность повреждаемой среды связана с введенными параметрами соотношением $\rho = \rho_s(W_s/W)$. Степень поврежденности среды характеризуется удельным объемом пор $V_f = W_f/(W\rho)$.

Система уравнений, описывающая нестационарные адиабатические движения сжимаемой среды с учетом эволюции микроповреждений состоит из уравнений неразрывности, движения, энергии, изменения удельного объема пор:

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho v) = 0, \qquad (1)$$

$$\frac{\rho dv_i}{dt} = \sigma_{ij,j}, \qquad (2)$$

$$\frac{dE}{dt} = \frac{1}{\rho} \sigma_{ij} \varepsilon_{ij}, \qquad (3)$$

[©] С. А. ЗЕЛЕПУГИН, 2001.

$$\frac{d V_{f}}{dt} = \begin{cases} 0, & \text{если } |P_{s}| \le P^{*} \text{ или } (P_{s} > P^{*} \text{ и} V_{f} = 0) \\ -\operatorname{sign}(P_{s}) K_{f}(|P_{s}| - P^{*})(V_{2} + V_{f}), \\ & \text{если } P_{s} < -P^{*} \text{ или } (P_{s} > P^{*} \text{ и} V_{f} > 0) \end{cases}$$
(4)

где ρ — плотность, V – вектор скорости, V₁ — компоненты вектора скорости, Е — удельная внутренняя энергия, σ_{ij} = -(P+Q) δ_{ij} +S_{ij} — компоненты тензора напряжений, ε_{ij} — компоненты тензора скоростей деформаций, P_s — давление в сплошной компоненте вещества, P = P_s(p/p_s) — среднее давление, Q искусственная вязкость,

 $P^* = P_k V_1 / (V_f + V_1), K_f, P_k, V_1, V_2$ — константы материала.

Давление в неповрежденном веществе является функцией удельного объема, внутренней энергии и удельного объема трещин и во всем диапазоне условий нагружения определяется с помощью уравнения состояния типа Ми-Грюнайзена [6]:

$$P_{s} = \rho_{0} a^{2} \mu + \rho_{0} a^{2} [1 - \gamma_{0}/2 + 2(b - 1)] \mu^{2} + \rho_{0} a^{2} [2(1 - \gamma_{0}/2)(b - 1) + 3(b - 1)^{2}] \mu^{3} + \gamma_{0} \rho_{0} E$$

где $\mu = V_0/(V - V_f)$ - 1, γ_0 — коэффициент Грюнайзена, V_0 и V — начальный и текущий удельные объемы, а и b константы ударной адиабаты Гюгонио, описываемой линейным соотношением $u_s = a + b u_p$, где u_s — скорость ударной волны, u_p — массовая скорость вещества за фронтом ударной волны.

В соответствии с подходом [7], примененным для расчета как компактирования, так и порообразования в условиях ударно-волнового нагружения, в настоящей работе использованы представления, согласно которым на изменение пористости влияет только шаровая компонента напряжений или давление, а компоненты девиатора напряжений ограничены независимой девиаторной функцией текучести:

$$2G\left(\varepsilon_{ij} - \frac{1}{3}\varepsilon_{kk}\delta_{ij}\right) = \frac{dS_{ij}^{0}}{dt} + \lambda S_{ij},$$

где dS_{ii}^0/dt — производная по Яуманну. Параметр λ тождественно равен нулю при упругой деформации, а

при наличии пластической — определяется с помощью условия текучести Мизеса:

$$S_{ij}S_{ij} = \frac{2}{3}\sigma^2$$

Здесь G — модуль сдвига, о — динамический предел текучести, которые зависели от давления, текущего уровня микроповреждений и температуры согласно соотношениям, приведенным в [6, 8, 9]. Для вычисления температуры используются соотношения, наиболее полно приведенные в [9].

В качестве критерия эрозионного разрушения материала, имеющего место в области интенсивного взаимодействия и деформирования контактирующих тел, используется критическое значение удельной энергии сдвиговых деформаций [5]. Текущее значение этой энергии вычисляется с помощью формулы

$$\rho \frac{dE_{sh}}{dt} = S_{ij} \varepsilon_{ij},$$

индексы і, і принимают значения 1, 2, 3. Критическая величина удельной энергии сдвиговых деформаций зависит от условий взаимодействия и является функцией начальной скорости удара

$$E_{sh}^c = a_{sh} + b_{sh}v_0,$$

где a_{sh}, b_{sh} - константы материала. Когда

$$E_{sh} > E_{sh}^c$$

в расчетной ячейке в области контактных границ, эта ячейка считается разрушенной, а параметры соседних ячеек корректируются с учетом законов сохранения.

На рис. 1 приведены хронограммы процесса внедрения группы из четырех идентичных компактных

цилиндрических ударников в преграду в моменты времени 3 и 10 мкс после начала взаимодействия. Диаметр и высота ударников составили 6 мм, толщина преграды 8 мм. Начальная скорость каждого ударника была равна 2873 м/с. Начальные расстояния между их центрами были выбраны следующим образом: между двумя крайними ударниками это расстояние составило 33 мм, два других были расположены симметрично на расстоянии 22.8 мм от одного ударника (на рис. 1 крайнего слева) и 25 мм от второго. В начальный момент времени торцевые поверхности всех четырех ударников находились в одной плоскости, отклоненной от лицевой поверхности преграды на угол 30⁰, при этом вектора скоростей ударников совпадали с их осями симметрии и с нормалью к данной плоскости. Материал взаимодействующих тел - сталь, константы материала можно найти в [3]. На контактных поверхностях реализованы условия скольжения. Для численного решения задачи использовался модифицированный метод конечных элементов [10, 11].

Верхний фрагмент на рис. 1 иллюстрирует момент процесса, когда промежуточные два ударника только начали взаимодействовать с преградой, в то время как последний, крайний справа, ударник еще не подошел к преграде, а первый внедряется в преграду, испытывая значительные пластические деформации, моделируемые в том числе с применением концепции разрушения эрозионного типа. Нижний фрагмент рис. 1 иллюстрирует этап устойчивого внедрения остатков ударников в преграду.

Расчеты показывают, что при заданных условиях взаимодействия наблюдается взаимное влияние процессов и образование объединенной зоны деформирования и разрушения в преграде с экстремумами, соответствующими каждому ударнику. Представленные на рис. 2 распределения изолиний (в каждом случае даны половинные сечения поверхности преграды из-за наличия плоскости симметрии), иллюстрируют слияние зон повреждений и деформирования первого и промежуточных ударников. Зона, обусловленная воздействием последнего ударника, несколько отстоит от объединенной области вследствие более позднего начала соударения и большего начального расстояния между ударниками. Кроме того, наблюдается дополнительный очаг повреждений между последним и средними ударниками, обусловленный их взаимным влиянием.

Список литературы

[1] ХОРЕВ И. Е., ГОРЕЛЬСКИЙ В. А., ЗЕЛЕПУГИН С. А. Исследование релаксационных эффектов в пластине при синхронном контактировании с ней двух частиц. *Прикладная механика*, № 6, 1989, 42-48.

[2] ХОРЕВ И. Е., ГОРЕЛЬСКИЙ В. А., ЗЕЛЕПУГИН С. А. Разрушение и релаксационные эффекты в пластинах при синхронном контактировании с ними двух тел. Проблемы прочности, № 7, 1992, 51-55.

[3] ГОРЕЛЬСКИЙ В. А., ЗЕЛЕПУГИН С. А. ТОЛКАЧЕВ В. Ф. Исследование пробивания преград при несимметричном высокоскоростном ударе с учетом разрушения и тепловых эффектов. *Известия АН. МТТ*, № 5, 1994, 121-130.

[4] ЗЕЛЕПУГИН С. А., СИДОРОВ В. Н. Трехмерный расчет формирования зон разрушений в пластине при синхронном ударе трех частиц. *Математическое моделирование процессов в синергетических системах:* Сборник статей, Улан-Удэ - Томск: Изд-во Том. ун-та, 1999, 181-183.

[5] ХОРЕВ И. Е., ЗЕЛЕПУГИН С. А., КОНЯЕВ А. А., СИДОРОВ В. Н., ФОРТОВ В. Е. Разрушение преград группой высокоскоростных тел. Доклады АН, **369**, № 4, 1999, 481-485.

[6] GUST W. H. High impact deformation of metal cylinders at elevated temperatures. J. Appl. Phys., 53, № 5, 1982, 3566-3575.

[7] ХЕРРМАН В. Определяющие уравнения уплотняющихся пористых материалов. В кн. "Проблемы теории пластичности", М.: Мир, 1976, 178-216.

[8] КАНЕЛЬ Г. И., РАЗОРЕНОВ С. В., УТКИН А. В., ФОРТОВ В. Е. Ударно-волновые явления в конденсированных средах. М.: "Янус-К", 1996.

[9] ЗЕЛЕПУГИН С. А., НИКУЛИЧЕВ В. Б. Численное моделирование взаимодействия серы и алюминия при ударноволновом нагружении. *ФГВ*, **36**, № 6, 2000, 186-191.

[10] JOHNSON G. R. High velocity impact calculations in three dimensions. J. Appl. Mech., 44, № 1, 1977, 95-100.

[11] ГОРЕЛЬСКИЙ В. А., ЗЕЛЕПУГИН С. А., СМОЛИН А. Ю. Исследование влияния дискретизации при расчете методом конечных элементов трехмерных задач высокоскоростного удара. *Журнал вычислительной математики и математической физики*, **37**, № 6, 1997, 742-750.

Рис. 1. Конфигурации взаимодействующих группы из четырех тел и преграды в различные моменты времени процесса несимметричного соударения.

Рис. 2. Изолинии удельного объема микропор (слева, Δ = 8 см³/кг) и удельной энергии сдвиговых деформаций (справа, Δ = 25 кДж/кг) на лицевой поверхности преграды в 17 мкс.