ИССЛЕДОВАНИЕ ПРОНИЦАЕМОСТИ *Т*-СЛОЯ В ДЕТОНАЦИОННОМ МГД-ГЕНЕРАТОРЕ ВЫСОКОГО ДАВЛЕНИЯ

В.В. Деревянко

Институт вычислительного моделирования СО РАН, Красноярск, Россия e-mail: dv@icm.krasn.ru

A computation model of detonation MHD-generator is developed. The generator operation is simulated numerically in a number of computationl experiments. The results of experiments show that heat-mass exchange between pusher gas and T-layer can be described as one of ways of permeability of current layer. Estimations of the heat-mass excange is made.

Введение

В основе концепции МГД-генераторов с *T*-слоем лежит гипотеза непроницаемости плазменного поршня в потоке толкающего газа [1]. На основе этой гипотезы проводится вычислительное моделирование работы генераторов, делаются оценки энергетических характеристик. Однако вопрос о ее правомерности до сих пор остается открытым.

Для случая генератора высокого давления вопрос о структуре токового слоя рассматривался в работе [2]. Было показано, что распределение давления в токовом слое носит существенно неоднородный характер. В области волны сжатия устанавливаются высокие температура и электропроводность, в области волны разрежения — низкие. Таким образом, масса толкающего газа взаимодействует с высокотемпературной областью *T*-слоя, что приводит к дрейфу проводящей области по массе газа в сторону области высокого давления.

В настоящей работе рассматривается генератор высокого давления, использующий детонационную волну в качестве источника потока толкающего газа — детонационный МГД-генератора (ДМГД) с T-слоем [3, 4]. Давление в потоке $\simeq 100$ атм обеспечивает высокую удельную мощность, а эффект запирания излучения в токовом слое при таких давлениях [8] позволяет существенно увеличить КПД генератора с T-слоем. На основе разработанной вычислительной модели ДМГД-генератора в вычислительных экспериментах получены энергетические характеристики генератора высокого давления и количественные оценки величины энергообмена между потоком толкающего газа и токовым слоем. Полученный результат позволяет рассматривать указанный энергообмен как один из механизмов проницаемости T-слоя.

1. Вычислительная модель

Вычислительная модель ДМГДГ, пригодная для моделирования работе генератора в режиме низкого давления (до 10 атм) в канале представлена в [3]. При переходе к режимам высоких давлений ($\simeq 100$ атм) в модель ДМГД-генератора, внесен ряд изменений. Во-первых, добавлена возможность проведения расчетов для канала переменного сечения. Во-вторых, изменен подход к расчету радиационных потерь в *T*-слое: теперь кроме процессов излучения учитываются также процессы поглощения, что позволяет моделировать запирание излучения в *T*-слое. В-третьих, приближение постоянного коэффициента нагрузки заменено на более реалистичную модель постоянного сопротивления нагрузки, что позволило более точно промоделировать процессы инициирования *T*-слоя и его взаимодействия с магнитным полем.

1.1. Система уравнений газодинамики

Общая система уравнений газодинамики, описывающая динамику движения газа в канале ДМГД-генератора, записывалась в виде:

$$\frac{\partial AU}{\partial t} + \frac{\partial AF}{\partial m} = S,\tag{1}$$

$$U = (\rho, m, E)^{\mathrm{T}}.$$
(2)

$$F = (m, m^2/\rho + p, (E+p)m^2/\rho)^{\mathrm{T}},$$
(3)

^{*}Работа поддержана интеграционным проектом \mathbb{N} 3 CO РАН Разработка и обоснование модели ГПВРД с МГД-управлением газовыми потоком в камере сгорания.

[©] В.В. Деревянко, 2001.

$$S = \begin{pmatrix} 0 \\ A \left(JB + p \frac{\partial A}{\partial x} \right) \\ A (Q_R - Q_{\text{load}} + Q_{\text{ini}} + Q_{\text{det}}) \end{pmatrix},$$
(4)

где A — сечение канала, ρ , m, E — консервативные переменные — плотность, количество движения и энергия; p — давление, Q_R , Q_{load} , Q_{ini} , Q_{det} — источники энергии: радиационные потери, энергия выделяющаяся на нагрузке, энергия инициирования и тепловыделение в детонационной волне; J — ток в цепи T-слой-нагрузка; B_0 — магнитная индукция. Индексом T обозначено транспонирование. Система уравнений (1-4) решалась численно с помощью схемы TVD второго порядка точности по пространству и времени, предложенной в работе [7]. В качестве граничных условий слева ставились условия отражения от непроницаемой стенки, справа для дозвукового истечения газа из канала задавалось фиксированное давление.

В модели применялось уравнение идеального политропного газа с постоянным показателем адиабаты $\gamma = \text{const}$ и молекулярным весом $\mu = \mu(p, T)$, заданным таблично.

1.2. Перенос излучения

Для определения радиационных потерь Q_R решалось уравнения переноса излучения для плоского слоя, с граничными условиями, соответствующими отсутствию падающего извне излучения:

$$\mu \frac{dI_{\nu}}{dx} + \chi_{\nu} I_{\nu} = 2\pi \chi_{\nu} I_{\nu p}, \quad x_0 \le x \le x_1, \quad -1 \le \mu \le 1,$$
(5)

$$I_{\nu}(x_0) = 0, \quad I_{\nu}(x_1) = 0,$$
 (6)

где I_{ν} — спектральная интенсивность излучения, ν — частота фотона, μ — косинус угла между направлением движения фотона и осью x, χ_{ν} — коэффициент поглощения фотонов с частотой ν , поправленный на вынужденное излучение, $I_{\nu p}$ — спектральная интенсивность равновесного излучения. Уравнение (5) решалось в многогрупповом приближении [6]. Весь задействованный спектр частот разбивался на N_{ν} интервалов — групп. В каждой группе коэффициент поглощения определялся с помощью осреднения по Планку и полагался не зависящим от частоты. В результате уравнение (5) записывалось в виде системы независимых уравнений:

$$\mu \frac{dI_k}{dx} + \chi_k I_k = 2\chi_k \sigma_k T^4, \quad 1 \le k \le N_\nu, \tag{7}$$

где

$$\sigma_k(T) = \frac{2\pi k^4}{c^2 h^3} \Big[\tilde{\sigma} \Big(\frac{h\nu_{k+1}}{kT} \Big) - \tilde{\sigma} \Big(\frac{h\nu_k}{kT} \Big) \Big], \quad \tilde{\sigma}(x) = \int_0^{\infty} \frac{\zeta^3}{e^{\zeta} - 1} d\zeta.$$

Из распределения спектральной интенсивности излучения для каждой группы, определялся поток энергии излучения

$$H = \int_{0}^{\infty} d\nu \int_{-1}^{1} \mu I_k d\mu = \sum_{0}^{N_{\nu}} \int_{-1}^{1} \mu I_k d\mu$$

и рассчитывались радиационные потери из единицы объема

$$Q_R = -\mathrm{div}H.$$

1.3. Взаимодействие Т-слоя с магнитным полем

Ранее в модели ДМГДГ [3] взаимодействие *T*-слоя с магнитным полем рассчитывалось в приближении постоянного коэффициента нагрузки

$$K = \frac{\Delta U(x)}{\varepsilon(x)} = \text{const},$$

где ΔU — напряжение на нагрузке, $\varepsilon = u(x)B$ — напряженность электрического поля. Если обозначить сопротивление нагрузки R^L , сопротивление *T*-слоя — R^T , то коэффициент нагрузки запишется в виде:

$$K = \frac{R^L(x)}{R^L(x) + R^{\mathrm{T}}(x)}.$$

Равенство выполняется только в случае идеально секционированного МГД-канала, причем каждой области T-слоя соответствует свое сопротивление нагрузки. Реализовать такую схему нагрузки в реальном генераторе невозможно, поэтому модель постоянного коэффициента нагрузки была изменена на модель постоянного сопротивления нагрузки. В этом случае электроды генератора сплошные, идеально проводящие (градиент потенциала вдоль электродов отсутствует) и нагружены на постоянное сопротивление R^L . Для развития T-слоя такая схема предпочтительнее, т. к. в начальной стадии развития T-слоя его интегральное сопротивление значительно больше сопротивления нагрузки и коэффициент нагрузки близок к нулю. Поэтому в начальный момент почти вся генерируемая энергия тратится на разогрев T-слоя, что приводит к быстрому его развитию.

Для сплошных электродов и постоянного сопротивления нагрузки $\Delta U = JR^{L}$. Согласно закону Ома для полной цепи, плотность тока в *T*-слое можно записать в виде:

$$J(x) = \frac{\varepsilon(x) - JR^L}{R^{\mathrm{T}}(x)},\tag{8}$$

где $\varepsilon(x) = u(x)A(x)B$ — напряженность электрического поля. Сопротивление участка *T*-слоя протяженностью *h* можно определить, зная проводимость $\sigma(p, T)$ газа и поперечное сечение канала *Y*

$$R^{\mathrm{T}}(x) = \frac{A(x)}{\sigma(p(x), T(x))hY}$$

Интегририрование уравнения (8) по всей области *T*-слоя $\Delta \ell$ дает выражение для полного тока:

$$J = (1 + R^L) \int_{\Delta \ell} \frac{\varepsilon(x)}{R^{\mathrm{T}}(x)} dx \int_{\Delta \ell} \frac{1}{R^{\mathrm{T}}(x)} dx.$$

Мощность, выделившаяся в нагрузке, и мощность джоулевой диссипации запишутся соответственно как:

$$Q_{\text{load}} = \int_{\Delta \ell} J(x) J R^L(x) dx \quad Q_{\text{dis}} = \int_{\Delta \ell} J(x) J R^{\text{T}}(x) dx.$$

2. Вычислительные эксперименты

Схема генератора, использованного в вычислительных экспериментах, представлена на рис. 1. В качестве горючей смеси применялась стехиометрическая воздушно-водородная смесь с начальным давлением 30 атм при комнатной температуре. Стационарное магнитное поле в электродной секции принималось равным 15 Тл. Ниже представлены результаты двух эксперименов, различающихся геометрией канала генератора. В эксперименте 1 электродная и детонационная секции имели большую протяженность, чем в эксперименте 2. С другой стороны, в эксперименте 2 сечение детонационной секции было больше, так что объем исходной горючей смеси в обоих экспериментах примерно совпадал.

Все расчеты проводились на равномерной сетке с dx = 2.5 мм, dt = 0.075 мкс. Излучение учитывалось в диапазоне от $0.25 \cdot 10^6 \text{ M}^{-1}$ до $150 \cdot 10^6 \text{ M}^{-1}$, спектр равномерно делился на 5 групп. Показатель адиабаты в уравнении состояния выбирался $\gamma = 1.35 = \text{const.}$ Табличные данные для молекулярного веса $\mu(p,T)$, коэффициентов поглощения $\chi(\nu, p, T)$ и электропроводности $\sigma(p,T)$ насчитывались с помощью пакета программ MONSTR [5]. При вычислениях использовалась логарифмическая интерполяция данных.

При численном моделировании определялись следующие основные интегральные величины и их зависимости от времени: $E_{\rm int}$ — внутренняя энергия в канале, $E_{\rm det}$ — энергия сгоревшего топлива, $E_{\rm ini}$ энергия инициирования *T*-слоя, $E_{\rm dis}$ — энергия джоулевой диссипации в *T*-слое, E_L — энергия выделившаяся на нагрузке, E_R — энергия излучения из *T*-слоя, $E_{\rm out}$ — энергия потока на выходе из канала в диффузор, $\eta_{\rm el} = (E_L - E_{\rm ini})/E_{\rm det}$ — электрический КПД, $E_{\rm layer}$ — внутренняя энергия *T*-слоя, W_L удельная энергетическая мощность генератора, равная

$$W_L = \frac{E_L}{TV_{MHD}},$$

где V_{MHD} — объем электродной секции, T — время движения T-слоя по электродной секции. Для контроля корректности вычислений в каждый момент времени определялся энергетический баланс:

$$\frac{E_{\text{int}}(0) + E_{\text{det}} + E_{\text{ini}}}{E_L(t) + E_R(t) + E_{\text{int}}(t) + E_{\text{out}}(t)} = \text{const.}$$

Рис. 1. Параметры ДМГДГ в экспериментах 1 и 2.

Рис. 2. Энергетические характеристики ДМГД-генератора. 1 — эксперимент 1; 2 — эксперимент 2.

Во всех расчетах энергобаланс сохранялся с погрешностью $\pm 2\%$, что объяснимо точностью выбранных численных методов.

Энергетические характеристики ДМГД-генератора, полученные в экспериментах, представлены на рис. 2 и в табл. 1 При анализе энергобаланса генератора обнаруживается явное превышение энергии джоулевой диссипации над радиационными энергопотерями, которое можно объяснить тем, что джоулева диссипация расходуется также на увеличение внутренней энергии T-слоя и на тепломассообмен с потоком газа. В области высокого давления в T-слое, где устанавливается максимальная температура, идет нагрев толкающего газа, за счет этого увеличивается внутренняя энергия T-слоя. Одновременно на правой границе T-слоя (вниз по потоку) происходит остывание газа за счет значительно большего потока излучения, при этом газ теряет электропроводность и уходит в волну разрежения. Таким образом, фактически, T-слой движется вверх по потоку в сторону электромагнитной силы торможения и через него протекает часть потока толкающего газа.

 a 1. oneprorn teenno napanrophornun Ani A ret							
	Эксперимент 1	Эксперимент 2					
$E_{\rm det}$	281.8 МДж	271.5 МДж					
$E_{\rm ini}$	15.0 МДж	15.0 МДж					
$E_{\rm dis}$	30.2 МДж	18.2 МДж					
E_L	51.6 МДж	45.6 МДж					
η	13%	11%					
T	30 мс	18 мс					
W_L	$900 \text{ MBt}/\text{m}^3$	$460 \text{ MBt}/\text{m}^{3}$					

Таблица 1: Энергетические характеристики ДМГД-генератора.

Таблица 2: Оценка энергии тепломассобмена в Т-слое.

Эксперимент 1							
	$E_{\rm dis}$, МДж	E_R, MI	Įж	$E_{\text{layer}}, MДж$		
$t_1 = 7 \mathrm{mc}$		7.4	0.0		13.0		
$t_2 = 20 \mathrm{mc}$		16.0	5.5		13.6		
ΔE		8.6	5.5		0.6		
$\Delta E / \Delta E_{\rm dis} \%$		100	63.9		7.0		
Эксперимент 2							
	$E_{\rm dis}$, МДж	E_R, MI	Įж	$E_{\text{layer}}, MДж$		
$t_1 = 2 \mathrm{mc}$		1.68	0.005	6	9.08		
$t_2 = 15 \text{ mc}$	1	15.06	6.05		13.55		
ΔE	1	13.38	6.05		4.47		
$\Delta E / \Delta E_{\rm dis} \%$		100	45.2		33.4		
		Экспери	имент 1	Эк	сперимент 2		
E_{TME}, M Дж		2.5		2.85			
$\Delta E_{TME} / \Delta E_{\rm dis} \%$		29.0		21.4			
$W_{TME}, \mathrm{MBt}/\mathrm{m}^2$		150		200			

Для анализа этого явления было рассмотрено изменение энергий диссипации, излучения и внутренней энергии *T*-слоя за промежуток времени между стабилизацией *T*-слой t_1 и началом выхода *T*-слоя из канала t_2 . Энергия тепломассообмена за этот период времени рассчитывалась как

$$E_{TME} = \Delta E_{dis} - \Delta E_R - \Delta E_{layer}.$$

Тепловая мощность потока через Т-слой оценивалась как

$$W_{TME} = \frac{E_{TME}}{(t_2 - t_1)\widetilde{A}_{MHD}}$$

где \widetilde{A}_{MHD} — среднее поперечное сечение электродной секции. Средняя тепловая мощность потока оценивалась как

$$\widetilde{W}_{flux} = \frac{E_{\text{out}}(t_1') - E_{\text{out}}(t_2')}{(t_2' - t_1')\widetilde{A}_{MHD}}$$

Моменты времени t'_1 , t'_2 выбирались на линейном участке изменения энергии E_{out} . Полученные результаты представлены в таблицах 2–3.

	Эксперимент 1	Эксперимент 2
t'_1 , MC	10	6
t'_{2} , мс	15	12
$E_{\rm out}(t_1'),$ МДж	40	10
$E_{\rm out}(t_2'), {\rm M}$ Дж	80	57
$\widetilde{W}_{flux}, \Gamma \mathrm{Bt}/\mathrm{m}^2$	6.4	6.3
$W_{TME}/\widetilde{W}_{flux}, \%$	2.3	3.2

Таблица 3: Оценка средней тепловой мощности потока.

Выводы

Таким образом, около 20 % энергии джоулевой диссипации идет на тепломассообмен с потоком толкающего газа, что составляет 2-3 % тепловой мощности потока. Эта величина и характеризует проницаемость плазменного поршня за счет тепломассообмена.

Список литературы

- [1] Васильев Е. Н., Деревянко В. А., Славин В. С. Стабилизированный токовый слой // ТВТ. 1986.
 Т. 24, № 5. С. 844-851.
- [2] Васильев Е. Н. Формирование токового слоя в условиях радиационного теплообмена при высоком давлении // Изв. СО АН СССР. 1990. № 1. С. 94–97.
- [3] Деревянко В. А., Деревянко В. В. Модель детонационного МГД-генератора с *T*-слоем // ТВТ. 2000.
 № 6. С. 985–990.
- [4] Деревянко В.В. Детонационный МГД-генератор высокого давления // готовится к печати.
- [5] Суржиков С. Т. Автоматизированная система исследования радиационных и динамических процессов в низкотемпературной плазме. М. 1988. 40 с. (Препринт № 313 Института проблем механики АН СССР).
- [6] Четверушкин Б. Н. Математическое моделирование задач динамики излучающего газа. М.: Наука, 1985. 304 с.
- [7] HUYNH H. T. Accurate Upwind Methods For The Euler Equations // SIAM J. Numer. Anal. 1995. Vol. 32, № 5. P. 1565–1619.
- [8] VASILYEV E. N., DEREVYANKO V. A., OVCHINNIKOV V. V. Radiation Characterisitcs and Structure of Current Layer in MHD Channel // 10th Intern. Conf. on MHD Power Generation, Dec 4–8. 1989.