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We present a new hybrid procedure for computing accurate approximations of eigenvectors of tridiagonal
symmetric unreduced matrices based on the algorithm proposed by S.K.Godunov et al. [2] and Inverse
Iteration. The new method uses very accurate shifts that do not break down Inverse Iteration and does
not require reorthogonalization of the eigenvectors corresponding to clustered eigenvalues, reducing Inverse
[teration complexity in the worst case from O(ns) to O(n2) floating point operations. At the same time the
new procedure allows to achieve iterative improvement over the ordinary Godunov’s procedure, which is not
guaranteed to produce accurate solutions in the absence of directed rounding mechanism.

1. Introduction

Construction of algorithms that allow to solve symmetric tridiagonal eigenvalue problem using O(n?) float-
ing point operations with guaranteed accuracy has become one of the most pressing problems of the modern
computer algebra. Indeed, QR method, one of the most accurate methods for solving eigenvalue problems,
requires 6n? arithmetic operations and O(n?) square roots operations [1] when eigenvectors of a tridiagonal
matrix are desired. It is well known that Inverse Iteration procedure takes O(n?) operations to find eigen-
vectors, corresponding to well separated eigenvalues. To achieve numerical orthogonality of the eigenvectors
corresponding to clustered eigenvalues, reorthogonilization procedures, such as Modified Gram-Schmidt process,
should be applied in the Inverse Iteration, increasing algorithm complexity to O(n?®) operations. In the case
of clustered eigenvalues Divide-and-Conquer algorithm requires much fewer than O(n®) operations due to the
deflation process.

Recently there have been attempts to construct hybrid procedures based on the Divide-and-Conquer and
Inverse Iteration methods. In 1997 Inderjit Dhillon proposed a new O(n?) algorithm for the symmetric tridiag-
onal eigen-problem based on the LDLT factorizations and Inverse Iteration, although without the formal proof
of the correctness of the algorithm. Much earlier, in 1985, S.K. Godunov, B.I.Kostin and A.D.Mitchenko [3]
proposed a Sturm sequence based method (algorithm 1) that allows to determine all eigenvectors of tridiago-
nal symmetric matrices with guaranteed accuracy using 11n? floating point operations. The algorithm gives
provably accurate solutions to symmetric tridiagonal problems on the architectures with extended precision
and directed rounding [2]. In the absence of directed rounding, results delivered by the method do not have
guaranteed nature, and are not as accurate as some Inverse Iteration implementations (see section 3).

In the paper we present a new procedure for computing eigenvectors of symmetric tridiagonal unreduced
matrices based on the Godunov’s method and Inverse Iteration method. In the absence of directed rounding
and extended precision, eigenvectors, computed according to the Godunov’s algorithm, are nearly orthogonal to
machine precision and can be used as very accurate starting vectors in the Inverse Iteration, insuring convergence
to the desired accuracy in a few steps. Near orthogonality of the starting eigenvectors eliminates the need for the
reorhogonalization of the eigenvectors corresponding to closely clustered eigenvalues, reducing complexity of the
hybrid Godunov — Inverse Iteration procedure to O(n?) arithmetic operations with floating point. Throughout
the paper we assume that symmetric matrices with arbitrary structure can be reduced to tridiagonal form with
orthogonal transformations, which preserve spectral properties of original matrices to machine precision.

*This project has been supported by the Russian Fund for Fundamental Research grant No. 00-01-00899 and SB RAS Program
for Integral Fundamental Research grant No. 1.

© A.M. Matsekh, E. P. Shurina, 2001.



2001, Vol 6, Pt 2, Special Issue Proceedings of International Conference RDAMM-2001 429

2. Godunov - Inverse Iteration Procedure

Consider eigenvalue problem for a tridiagonal symmetric matrix 7' in the Euclidean subspace R™*™. The
problem consists in finding non-zero vectors z; € R” and numbers \; € R that satisfy the following equation:

Te; = Nz, i=1,..n- (1)

When the matrix 7" is unreduced, i.e. does not have zero entries among the codiagonal elements, its
eigenvalues \; are distinct, while eigenvectors x; are unique up to a scale factor and form an orthogonal basis
in R**™ [4].

All eigenvalues of the matrix 7" can be found by the bisection algorithm, in O(bn?) operations, where b is
the number of bits of precision in a computer representation of floating point numbers [1]. We apply bisection
algorithm [2] to compute intervals (a;, b;) containing eigenvalues A; computed with guaranteed accuracy:

b = ai] < emachlITloo i=1, . (2)

where €p4cp 18 the unit roundoff error. In the Godunov’s method eigen-interval bounds a; and b; are used to
compute left- and right-hand-side Sturm sequences PO‘", .. .P:_l and Py, ... P, _, from the minors corresponding
to the operators T — a;I and T — b; I respectively [3]. Here I is n x n identity matrix. Then the sequences
are combined into the compound Sturm sequence, which is used to compute eigenvector approximation x;,
corresponding to the eigenvalue A; € (a;,b;). We give the detailed description of the procedure below. Note
that the complexity of the method is 11n operations per an eigenvector.

Algorithm 1 (Godunov’s Method). Compute approzimate eigenvector U of the tridiagonal matriz T =
TT € R with main diagonal d and codiagonal b, corresponding to the eigenvalue z € (z,y) sit. |y — 2| <
€mach ||T||oo, Where €mach is machine precision.

godunov_eigenvector((x, y), d, b)

Py = bol/(do — y)
if (Pf<0)M;=1
else My =0
for t=1:n-2
P = 1bil/(di —y = |bioa]) - P4
if (PY<0)M;=M;_+1
else M; = M;_,
end
Py =1/(dnor =y = bazl) - P,
if (PT,<0)My_y=M,_5+1
else M,,_1 =M, _>
P i =dy_1—x
if (P_,<0)Lp.1=n-1
else L,_1 =0
for k=n—-2:1k——
P = (dy — 2 — |bk|/Pk_+1)/|bk—1|
if (P <0)Lg=1Lgp1—1
else Ly = Ly
if (Mg == Lix+1 ) (Pk-l_—l - Pk_) ’ (1/Pk_+1 - 1/Pk+) < 0) break
end
Ctg={Pf Pt ... Pf, P, P y,.... P}
Uy=1
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for t=0:n—1,14++
Uy = Uiy - —sign(b;_1)/Ctgi—1

end

return U/||U|]

end

On architectures with extended precision and directed rounding, eigenvectors ; are provably accurate and
the following error estimate holds [3]:

(T = XDl < 13V 3emacn] [ T|oo - (3)

Here again I denotes n x n identity matrix and €45 18 the unit roundoff error. Eigenvectors, computed
according to the algorithm (1) on the architectures with IEEE double precision without directed rounding,
belong to some close vicinity of the eigenvector z;, having nontrivial component in the direction of the desired
eigenvector. We propose to use such an eigenvector as a starting vector z? in the Inverse Iteration procedure:

(T - XiI)fo = Tl‘f, k=0,1,2,.. (4)
0
1
1s a random vector from the

where ||z%|| = 1 and the scalar 7 is chosen to make ||fT!|| = 1. When the starting eigenvector z? is not
chosen deterministically, for instance in the LAPACK version of the algorithm z?
Uniform distribution on (—1, 1), reorthogonalization procedure is incorporated into the Inverse Tteration. This
1s necessary to maintain orthogonality among the eigenvectors corresponding to clustered eigenvalues. Being
almost orthogonal to machine precision €41, starting eigenvector z?, computed according to the Godunov’s
method, does not require additional reorthogonilization, what allows to eliminate Modified Gram-Schmidt
procedure from the Inverse Iteration.

When the shift /\NZ in (4) is too close to the actual eigenvalue A;, the operator 7' — /\NZ'I is almost singular
and the iteration breaks down. Such situations are illustrated in the tables 4 and 6 where in the LAPACK and
EISPACK versions of the Inverse Iteration some eigenvectors failed to converge and as the result orthogonality-
loss measure || X7 X — I||r was unacceptable. Instead of the eigenvalue approximation N = (a; + b;)/2 we use
right boundary of the eigen-interval (a;, b;) as the shift /\NZ = b; to avoid overflow in the computation. The new

procedure is formally described by the following algorithm:

Algorithm 2 (Godunov - Inverse Iteration Method). Compule eigenvectors x;, i = 1,...,n of the tridi-
agonal matriz T = TT € R™™ with main diagonal d and codiagonal b, corresponding to the eigenvalues
Ai € (a5, 8:),i=1,...,n st |Bi — o] < €mach ||T]|co, Where €macn is machine precision.

godunov_inverse_iteration((a;, §;), d, b)

for (i =0,i<n,i++4)

k=0
d= 13\/§ €mach
z? = godunov _eigenvector((«a, 3),d,b)

vi = Bi

if (k>00 |y — i1l <10 emach [vl)

then v; = v;_1 + 10€macn| i

do
Factor (T — ;1) = LpL*
Solve LDIT ++1 — l‘f
A = e
k=k+1

while (|[(T = 81)2%t!|e > ||T|o)

Il2

end
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3. Testing Results

We implemented and tested algorithms 1 and 2 as well as LAPACK and EISPACK versions of the Inverse
Tteration algorithm [1] in ANSI C, using IEEE double precision (GNU C compiler) on a Pentium IT processor.
We used Bisection method to compute eigen-intervals (a;, b;) with the accuracy [b; — a;| < €macn||T||eo. Intervals
(ai, b;) were used in the original Godunov’s method and in the new Godunov — Inverse Iteration procedure,
while in the LAPACK and EISPACK versions of the Inverse Iteration we used /\NZ = (a; +b;)/2 as the eigenvalue
approximations. In all of the tests presented below Godunov — Inverse Iteration procedure converged to desired
accuracy in just one step, while the results are at least as good as in the LAPACK and EISPACK versions of
the algorithm, at the same time we get a significant improvement over the original Godunov’s algorithm. Note
that the new procedure, as well as the Godunov’s algorithm are very robust procedures, and do not break down
when eigenvalues used in the computations are very accurate.

Example 1. n =24, S={5;;}, ,j=0,1,...,n—1

S"—{ 0, 1=
YL E+2)/ VA2 - il <]

max [Ar(S) — Mg (S)| = 2.7755575615628914e — 16, k=1,...,n

max 105 — A Dol IXTX —1[lr
Godunov Method 7.3513184540692025¢ — 15 | 6.0095114958263332¢ — 14

EISPACK Inverse Iteration | 2.0467254147379373e — 14 | 1.8633084865971006e — 13

LAPACK Inverse Iteration | 2.5382219767164785¢ — 16 | 1.9096045938831537e — 15

Godunov - Inverse Iteration | 2.5602944862447319¢ — 16 | 2.3784234169765855¢ — 15

ey

maximum absolute deviation A = 2.7755575615628914e — 16 from the exact eigenvalues .

max [Ar(S) — Mg (S)| = 1.1102230246251565e — 16, k=1,...,n

max [0S = N Dl IXTY —1llr
Godunov Method 4.8688756855745829¢ — 15 | 3.1930538735098823¢ — 14

EISPACK Inverse Iteration | 1.4142897691197826e — 14 | 9.7529023714049282¢ — 14

LAPACK Inverse Iteration | 1.2656964587626072¢ — 16 | 1.9059052297984708e — 15

Godunov - Inverse Iteration | 1.3115747911312276e — 16 | 1.8111076211312865¢ — 15

ey

maximum absolute deviation A = 1.1102230246251565¢ — 16 from the exact eigenvalues .

Example 2. n = 100

2 -1 0
-1 2
Q= (5)
2 -1
0 -1 2
Example 3. n = 100
0 0.5 0
0.5 0
R= (6)
0.5
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max [ X:(Q) — Ak (Q)] = 1.3322676295501878¢ — 15, k=1,...,n

max |[(Q — Mg 1) zg]|2

XX — 1]lr

Godunov Method

9.1865709358232547e — 13

6.5674740690484012¢ — 12

EISPACK Inverse Iteration

1.5972031730641600e — 13

5.3111542229596125¢ — 12

LAPACK Inverse Iteration

9.0534322991756901e — 16

1.2304642238924916e — 14

Godunov - Inverse Iteration

9.0483549862370509¢ — 16

1.3787143826091051e — 14

Table 3. FError estimates of the eigenvectors X = |zi|g=1,...n of @, corresponding to eigenvalues b computed with
maximum absolute deviation A = 1.3322676295501878e — 15 from the exact eigenvalues .

max [Xx(Q) — Ak (Q)] = 8.8817841970012523¢ — 16, k=1,...,n

max |[(Q — Mg 1) zg]|2

XX — 1]lr

Godunov Method

4.0409590033451748¢e — 13

3.2089258554650916e — 12

EISPACK Inverse Iteration

3.5660764663933954e — 13

1.0000000000000000€e + 00

LAPACK Inverse Iteration

4.7201413487856058¢ — 16

1.0000000000000000€e + 00

Godunov - Inverse Iteration

4.7342893020488205¢ — 16

1.1064736864164124e — 14

Table 4. FError estimates of the eigenvectors X = |zx|g=1,...n of @, corresponding to eigenvalues b computed with
maximum absolute deviation A = 8.8817841970012523e — 16 from the exact eigenvalues .

max A (R) — Ax (R)| = 4.4408920985006262¢ — 16, k= 1,...,n

max |[(R — A D)ag||2

[XTX —1Ir

Godunov Method

5.5257061611023821e — 14

8.7562001183895331e — 13

EISPACK Inverse Iteration

1.7830382331966977¢ — 13

3.7768280761380130e — 12

LAPACK Inverse Iteration

2.3600706743928029%¢ — 16

1.3574708086966272¢ — 14

Godunov - Inverse Iteration

2.3918916617431402¢ — 16

9.4345051360760012¢ — 15

Table 5. FError estimates of the eigenvectors X = |zi|x=1,..» of R, corresponding to eigenvalues b computed with
maximum absolute deviation A = 4.4408920985006262¢ — 16 from the exact eigenvalues .

max A (R) — Ak (R)| = 2.7755575615628914e — 16, k=1,...,n

max |[(R — A D)ag||2

[XTX —1Ir

Godunov Method

4.6849824383640486e — 14

6.0971993995822085¢ — 13

EISPACK Inverse Iteration

1.9939253282522608¢ — 13

1.4142135623730951e + 00

LAPACK Inverse Iteration

1.3699144518926750¢e — 16

1.4142135623730951e + 00

Godunov - Inverse Iteration

1.3510126972303390e — 16

1.4246653384402244e — 14

Table 6. FError estimates of the eigenvectors X = |zx|x=1,..» of R, corresponding to eigenvalues b computed with
maximum absolute deviation A = 2.7755575615628914e — 16 from the exact eigenvalues .
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4. Conclusions

In this paper we presented a new robust procedure (algorithm 2) for computing eigenvectors of symmetric
tridiagonal matrices. We use eigenvectors computed according to the Godunov’s method as very accurate
starting vectors in the Inverse Iteration. With starting eigenvectors nearly orthogonal, there is no need to apply
Modified Gram-Schmidt orthogonalization, reducing the worst case complexity of the algorithm to O(n?) floating
point operations. Godunov’s method uses bisection algorithm to compute the smallest machine representable
intervals that are guaranteed to contain eigenvalues of the tridiagonal matrix [2]. We use the right bounds of
these eigenvalue intervals as the shifts in the Inverse Iteration in order to avoid the breakdown of the iteration,
which may occur with more accurate shifts. In most experiments on the system without directed rounding
(IEEE double precision, GNU C compiler, Pentium II processor) the new procedure converged in just one
Inverse Iteration step, giving more accurate results than the Godunov’s algorithm, and at least as accurate
results as the standard Inverse Iteration procedures.
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