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The application of the weak approximation method in inverse problems

YU. YA. BELOV
Krasnoyarsk State University, Russia

The report is devoted to the application of the splitting method at differential equations (the weak
approximation method by N.N. Yanenko [3-5]) for the problems of identification of coefficients in partial
differential equations.

Theorem concerning the weak approximation method convergence for integrodifferential equations is
formulated and proved. On the basis of this theorem the solvability of inverse problems for partial differential
equations 1s proved. This method is used by investigation of the problem with unknown lowest coefficient

in parabolic equation.

1. One theorem of the weak approximation method

In the strip Gy, ¢) = {(t, 2, y) | to <t <t1,2 € F,,y € E1} we consider the integrodifferential equation

Ju
— =Vt 2, y,7 J(u). (1)
ot
Here v = uy +iug, ¥ = ¥y 4+ iV, are complex—valued functions, and functions w, = ux(t,z,y), ¥ =
Uy (t, x,y,4,J(u)) are real-valued functions in G, 4.
Byu = (v(o), v v(p)) we denote the vector—function which components are defined in the following way:
v(® = v; v is a vector composed by means of all first order derivatives of v with respect to zj,j=1,...,n;

v(?) is a vector composed by means of all second order derivatives of v with respect to # and so on; v(®) is a
vector composed by means of all order p derivatives of v with respect to x.
_ dv ov 6% 0%v OPv OPu
Thus W= (v, =—, ..., 5= 55, > 375 5 5 = 7 |-
Oz Oxy, Ox? Ox? oz Oxzh,
By J(u) we denote the vector-function J(uw) = (Jo(u),Ji(w),....Jr(x)), » > 0 is an integer; Ji(u) =
ffooo y* u(t,z,y)dy, k=0,1, ..., r.

We suppose that ¥ = >~ ¥/,

j=1
Consider the equation
ou” - ,
e Zaij(t)\I!](t,x,y,UT,J(uT)), (2)
j=1
where functions o ; are denoted by relation
- .
_ m, tg+ n—i—j— T<t<iy+ n—i—i T,
O‘ij(T’ t) = m m
0, otherwise,

n=01,....N—1; 7N =11 — 1.

The equation (2) approximates the equation (1) weakly.
Finally we consider the equation

8UT i 7 —T T
o = O (W (e, y, T, (), 3)
j:l

where functious Wi (¢, z,y,u", J(u")) are some functions W/ (¢, z,y, @, J(u")) approximations depending on 7.

Below we consider classical solutions to equations (1), ((2), (3)) only. We mean the classical solution to
equation (2), ((3)) is a continuous function that has all continuous derivaties with respect to z, entering the
equation (2), ((3)) and has piecewise continuous derivaties u] in the strip G|y, 4,1 (possibly u] has discontinuities
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on hyperplanest = (n+j/m); n=20,1, ..., N—1; 7N =t1—19;j=0,1, ..., m—1) and satysfies the equation
(2), (3)) in G 0,)- .

Assumption 1. Functions ¥/ are denoted, and continuous for (¢,2,y) € G[s, ] and any values of other
independent variables.

Assumption 2. Let a classical solution u™ to system (3) in Gf, 4,1 for all 7, > 0 exists. The sequence
{u™ } with their derivatives with respect to « that are contained in (1) converge to a vector-function u in G, 4,1,
and this convergence is uniform in nyu ] for all fixed M.

Assumption 3. Integrals J;(u™) converge absolutely and uniformly by 7, and (¢, ) € Ilj, ;). Integrals
Jj(u) converge absolutely and uniformly by (¢, 2) € If;, ;,1, and J;(u},) converge to J;(u) uniformly in H[t 1]
for all fixed M as 7, — 0.

Assumption 4. For all fixed M

lim max (W9 (¢, 2,y 7, J(0™)) — Wt 2,y 7, T (7)) = 0,

Te—0 GM

j=0,1,...,r

Here M > 0 is a constant in Assumptions 1—-4.
Theorem 1. Let Assumptions 1 -4 be satisfied. Then the function u(t,z,y) is a solution to equation (1) in

G[to,h]’

Proof. Average functions
1 t+v
wylte) = [ W) ds
Ve

exist in GM ] for any ¢ from interval (¢g,?1) (for sufficienty small ) and the sequence u¥, converges to u as

[to,t*

v—0 umformly in GM [to,t*]"

Let us prove that 3u(w/3t converges to du/dt uniformly in G [to,t*]"

Now we average (3). We deduce the equation

a;%:\I!(t,ab,y,ﬂ”,J(u”))—I—Fl,, (4)
where
Fo= ey J(w) =
=2 2 JLH0.2, 0. (0), T (0)) = W20, 7 (1), (0 (1))} 0. )

Let’s consider the mtegrand in (5):
(W0, 2, y, 7 (0), J(u”(0))) — W (¢, ,y, 7 (t), J (u”(t)))| <

< W (0, w,y, @ (0), (" (0) — W (0,2, y, 7" (0), J(u” (0)) 1+

W (0, 2, 5,7 (0), T (' (0))) = WI(t, 2, y, 0 (1), T (u”(1)))].
When v — 0 the first term in the right-hand part of the latter inequality tends to zero uniformly in GM [to,t*]

due to Assumption 4. The second term also tends to zero uniformly in G .., but due to the uniform continuity

[to,t*
of the vector—function ¥/ on all its arguments for each compact set (see ]Assumption 1) and equicontinuity
with respect to ¢, « in Gt 1+ and H[t o1 of the sequences {u”(?)} and {J(u"(t))} respectively (according to
Assumptions 2, 3 and the Arzela’s theorem).

Hence, if v — 0 then function sequence F, — 0 uniformly in Gt ] As U(t,x,y,u”(t), J(u”(t))) con-
verges uniformly in Gt o o U(t,z,y,u(t), J(u(t))) (accoding to Assumptions 3-5), then dul, /Ot — Ju/0t
= U(t, z,y,u(t), J(u(t))) uniformly in Gt pr

By theorem on differentiation of functional sequences du, /8t — du/dt uniformly in G [to,t+]- Lhus Ju /ot
= U(t,z,y,4,J(u)), that is u is a classical solution of the equation (1) in G¥

[to,t*]"
Considering the average functions
1 t
—/ u” (0) dé,
V iy

we can prove that w(t) is the solution of the system (1) in G for any £, € (tp,t1) and therefore in G
Theorem 1 is proved.

[to,t1]"
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2. The inverse problem

Below we consider the example connected with the using Theorem 1 to the problem of identification of coefficients
for partial differential equations.

Let us consider in G = {(t,2,2) |0 <t <T,x € By, z € E1},T = const >0, n > 1, n is an integer,
the Cauchy problem

ur(t, 2, 2) = Lp(u(t, z,2)) + a(t)usz (t, x,2) + b(H)us (¢, z, 2)+ (6)
+e(t, z)ult,z, z) + f(t, z, 2),

uw(0,2,2) = ug(z,2), (z,2) € Fnt1, (7)

where
n

n
Ly(u) = E Ujhte o, + E ajtg,.
7,k=1 j=1

We assume that f(¢, z, 2), uo(x, z) are the given functions in G 7] and Ej, 41, respectively, and the coeflicients
a;jk(t), a;(t), j,k =1, ..., n, and functions a(t), b(¢) are the continuous functions of the variable ¢, a(t) > 0,
0 <t < 1T, and the condition

k|E]F < Z a;j,(t)éée, Vé€ E,, te[0,T7], &= const>0,
7,k=1
1s satisfied.
We also assume that
u(t’x’O) = gp(t,l‘), (t,l‘) EH[OVT], (8)

where ¢(t,x) is a given function satisfying the consistency condition

0(0,2) = ug(x,0), » € Eyn, (9)
and in Iljo 7

0<d<l|p(t ), J=const. (10)

In the problem (6) - (8) the coefficient ¢(¢, z) (8¢/dz = 0) and the function u(t, z, z) are unknown.

All the above mentioned functions are real-valued ones.

Assuming the existence of the Fourier transform of the function u(¢, #, z) with respect to the variable z and
using the condition (8), the problem (6)—(8) is reduced to the problem

u(t,z,y) = Ly(v(t,z,y)) — yza(t)v(t, z,y) +ib)yv(t, 2, y) +

v(t,z,y) Foo y
+WRGW(tax)+a(t)/_oo y u(t,z,y)dy —
+o0
—ib(t)/_ yo(t,z,y) dy] + @(t, z,y), (11)
v(O,x,y):vo(x,y), $6Ena yEE1~ (12)

Here ¢ = ¢ — Ly(p) — fls=0 and v(t, z,y), (¢, 2, y), and vo(x,y) are the Fourier transforms with respect
to the variable z of the functions u(t, z, z), f(¢, z, z), and ug(x, 2), respectively:

I :
v(t,z,y) = —/ u(t, z, 2)e™Y dz,

1 [t :
Ot 2, y) = —/ ft, x,2)e™Y dz,

27 J_ o

+oo
vo(z,y) = i ug (2 z)e_izy dz
) I . ) .

We reduce the problem (6)—(8) to the problem (11), (12) in the same way as we have reduced the inverse
problems to the direct problems in [1, 2].
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3. The Solvability of the Direct Problem

We weakly approximate the problem (11), (12) by the problem

1
vl (b o, y) = 3L, (v (¢, z,y)), nr<i< (n + g) T, (13)

vl (8,2, y) = 3(iyd(t) — y*a(t))v” (t, 2, y), (14)
DY rciz (us 7).

T +o0
3U (t,l‘,y) ysz (t— g’l,’y) dy_

o7t = 2D Relute )+ att) |

— 00

+oo -
_ib(t)/ yvT (t — 3o y) dy] + 3% (¢, 2, y),

<n+§)r<t§(n—|—1)r, (15)
v (0,2,y) = vo(z,y), (16)

where n = 0,1, ..., N — 1 and 7N =7 N is an integer.

As concerns the functions ¢, ¢, ®, vy we suppose that they are sufficiently smooth (they have continuous
derivatives with respect to the variables x,y given in (17), (18) in Ijg 77, Gpo,r] and Ej, 41 respectively. The
functions satisfying the relations

|DZvol + D7 ®| + | DI + |DIg| < e,

|ﬁ|:ka ]{7:0,1, a4’ (t’$’y) EG[OVT]' (17)
|3DWU|+|3DV<I>|<N' Yl=4; j=0,1,2
6@ Tvg 6@ i < Ny, il ) ) Ly 4y

o+ (Dol + o+ [ DEB] < My, |8 = ki k=0,1, .. 4 (e

[y |5 Dyvol + [y | & D3 @ < Ry, ol =i 5= 0,1,2.

»From the construction of the solution v” of the problem (13) - (16) and the conditions (18), (17) it follows
that for any fixed 7 the solution v” exists, and has continuous in Gy 7] derivatives DEy™ | |B] < 4, DY (dv7 /dy),
4] < 2 and

PIDES (¢, 2, )] < e, 18] < 4 (t,,) € Glozys p = 0,0+ <. (19)
0
‘ED?UT(t,x,y)‘ <e, o <2 (tx,y) €G- (20)
| &Div (Lay)|<e 181<2 (1) € G, (21)
»From estimates (19) (under p = 0) there follows uniform in Gy ) boundedness with respect to 7 of

the family of the derivatives {DZv™} for fixed 8,3 < 2, and from estimates (19), (20)—(21) there follows
equicontinuity in G 7] with respect to ¢, x,y of the same family. According to the Arzela’s theorem the set
{D?v™} is compact in C’(GE‘O{T]), |8l <2, M > 0 is a constant.

By means of a diagonal method we choose the subsequence {v7} (the notation is not changed) converging
together with the derivatives {DZv™}, |8] < 2, to some function v in the strip Go 7] and also uniformly in Gf‘gT]
for any M > 0:

D™ — D%v  uniformly in GE‘O{T] asT — 0, |o|<2. (22)

The function v is continuous in Gpo 7] together with the derivatives D v, || < 2, and satisfies the inequality
(see (19)).
lyPIDRv(t, x, y)l <e,  (La,y) €Gpry, p=0,v+e, (23)
and initial data (7).
Thanks to (19), (22), (23) the conditions of the Theorem 1 are fulfilled. By Theorem 1 the function v(t, z, y)
is the solution of the equation (6) in Gy 7.
In our case (see Assumptions 1-4 of the Theorem 1) m =3, r = 2,

U(t,a,y, 07, J(v7)) = Le (v (t, 2, 9)) + (—a(t)y® +iyb(t))v” (t, 2, y)+
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v (t, 2, y) +oo

+ DRt a) + alt) [ () dy-

oQ

+o0
_ib(t)/ yo' (¢ x,y) dy] + @(t, =, y),

— 00

Ut x,y, o7, J(v )) Uit x

z,y, v, J(v T)) = Lo (v (1, 2,y)),
\Ijz(t Ty, ( )) \Ijr(t Ty, (UT)) =
= (iyb(t) — y*a(®))v" (t, 2,y),
Wt z,y, 07, J(v7)) = vgp(ft “;)y)R e[ (t, v)+
+a(t) /_"‘00 y?uT (t, x,y) dy — ib(t) /_"‘00 yo’ (t,z,y) dyl + @, 2, y),
V3 (¢, x,y, 07, J(vT)) = %Re[ﬂ)(lﬁ,l‘)—l—
+oo
valt) [T Fo) dy-

—ib(t)/+ooy T(t= 5 wy) dyl + (¢, @, y).

— 00

Function v(t, z,y) belongs to the class C’tly’xz(G[oyt*]) and satisfies the initial data (
following theorem.

Theorem 2. Let assumptions (10), (17), (18) be satisfied. Then there exists the solution v(t,x,y) for the
problem (11), (12) in class C’tly’xz(G[oyt*]) so that it satisfies the relations (23).

There is C; 7 (Gpoe.)) = {f1f, for fre € C(Glo )

12). We have proved the
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