ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ СВЕРХЗВУКОВЫХ ОТРЫВНЫХ ТЕЧЕНИЙ С ИСПОЛЬЗОВАНИЕМ СХЕМ ВЫСОКОГО РАЗРЕШЕНИЯ

И.А. Бедарев, А.В. Борисов, Н.Н. Федорова

Институт теоретической и прикладной механики СО РАН, Новосибирск, Россия e-mail: bedarev@itam.nsc.ru

В работе приведены результаты численного моделирования обтекания турбулентным и ламинарным потоком осесимметричных (цилиндр и конус с "юбкой") конфигураций. Расчеты выполнялись для сверхзвукового и гиперзвукового режимов обтекания в широком диапазоне геометрических параметров. Все расчеты проведены в условиях реальных физических экспериментов, выполненных в различных аэродинамических установках. Сравнение с экспериментом проводилось по полям давления и скорости, распределению поверхностного давления и трения, а также по распределению коэффициента интенсивности поверхностного теплообмена. Выполненные расчеты и сравнения с экспериментальными данными позволили верифицировать расчетный метод и используемую модель турбулентности в исследуемом диапазоне геометрических и газодинамических параметров.

Введение

В настоящей работе представлены результаты численного моделирования течений в окрестности осесимметричных конфигураций: полого цилиндра с "юбкой" при числах Маха M = 3, 5, 7 и конуса с "юбкой" при M = 6. Характерной особенностью течений в окрестности данных конфигураций является отрыв, возникающий в результате взаимодействия развивающегося на поверхности модели пограничного слоя со скачками уплотнения. Цель работы состоит в исследовании возможностей численного алгоритма предсказывать параметры отрывных течений. Все расчеты проведены в условиях реальных экспериментов. Используемые экспериментальные данные для цилиндра ранее были выбраны в качестве тестовых при проведении верификации методов расчетов и моделей турбулентности в рамках AGARD WG18 [1, 2]. В настоящей работе все предложенные в [1] турбулентные осесимметричные случаи описаны в рамках единого подхода и модели турбулентности. Наряду с турбулентным, рассмотрено ламинарное обтекание (конус с "юбкой"), экспериментально исследованное в [3].

Рассматриваемые течения. На рис. 1 показана схема отрывного течения, реализующаяся в окрестности исследуемой конфигурации. На этом рисунке α_1 — угол полураствора конуса (цилиндру соответствует случай $\alpha_1 = 0$), α_2 – угол "юбки", который вместе с числом Маха набегающего потока M определяет, будет ли иметь место отрыв, или течение останется безотрывным. Цифрой 1 обозначена граница пограничного слоя, 2–4 — λ -конфигурация скачков уплотнения, 5 — волна разрежения, исходящая из тройной точки λ -конфигурации, 6 — отрывная зона, ограниченная точками отрыва (S) и присоединения (R). В Таблице приведены экспериментальные параметры течений, исследованных численно в настоящей работе. Отметим, что в случае турбулентных течений расчет проводился не от начала модели, а с некоторого сечения, находящегося ниже по течению за точкой ламинарно-турбулентного перехода, в котором была задана толщина пограничного слоя δ и другие интегральные параметры.

Основные уравнения и вычислительный метод. Математической моделью служили осредненные по Фавру уравнения Навье—Стокса, записанные в криволинейных координатах $\xi = \xi(x, r)$, $\eta = \eta(x, r)$:

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial \xi} + \frac{\partial G}{\partial \eta} = \frac{\partial R}{\partial \xi} + \frac{\partial S}{\partial \eta} + H_A,$$

где U есть вектор консервативных переменных,

$$U = J(\rho, \rho u, \rho v, E)$$

^{*}Работа выполнена при финансовой поддержке РФФИ (код проекта 99–01–00565) и при поддержке Программы интеграционных фундаментальных исследований СО РАН, проект 2000 № 1.

[©] И.А. Бедарев, А.В. Борисов, Н.Н. Федорова, 2001.

Ν	Конфиг.	α_1, \circ	α_2, \circ	r, MM	M_{∞}	Re ₁ , $^{-1}$	P_0 , Pa	T_0, \mathbf{K}	δ , mm
1	конус	7	17	_	5.92	$11.8 \cdot 10^{6}$	$9.76 \cdot 10^4$	386	_
2	цилиндр	0	30	25.4	2.85	$1.6 \cdot 10^{7}$	$1.7 \cdot 10^{5}$	265	11
3	цилиндр	0	35	65.5	5.01	$4.41 \cdot 10^{7}$	$3.5 \cdot 10^{6}$	500	2.5
4	цилиндр	0	35	25.4	7.05	$5.66 \cdot 10^{6}$	$2.45 \cdot 10^{6}$	890	25

Таблица 1. Условия экспериментов

Рис. 1. Схема течения.

 ρ — плотность; и и v — скорости в x и r — направлениях соответственно; E — полная энергия жидкости на единицу объема. Невязкие и вязкие потоки могут быть представлены в виде: $\tilde{F} = J (F\xi_x + G\xi_r)$, $\tilde{G} = J (F\eta_x + G\eta_r)$, $\tilde{R} = J (R\xi_x + S\xi_r)$, $\tilde{S} = J (R\eta_x + S\eta_r)$, где тильда означает, что потоки записаны в криволинейной системе координат, J — Якобиан преобразования. Вектора невязких (E и G) и вязких (R и S), потоков в декартовой системе координат имееют вид:

$$F = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ (E+p) u \end{pmatrix}, \quad G = \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ (E+p) v \end{pmatrix}, \quad R = \begin{pmatrix} 0 \\ t_{xx} \\ t_{xr} \\ ut_{xx} + vt_{xr} - \dot{q}_x \end{pmatrix}, \quad S = \begin{pmatrix} 0 \\ t_{rx} \\ t_{rr} \\ ut_{xr} + vt_{rr} - \dot{q}_r \end{pmatrix}.$$

Полная удельная энергия E включает удельную внутреннюю энергию е и кинетическую энергию жидкости: $E = \rho e + \frac{1}{2}\rho \left(u^2 + v^2\right)$. Давление р вычисляется из уравнения состояния идеального газа $p = \gamma \rho e$. Тепловые потоки \dot{q}_x, \dot{q}_r моделировались согласно закону Фурье. Источниковый член H_A , учитывающий осесимметричность задачи, может быть записан как

$$H_A = H_A^{\text{inv}} + H_A^{\text{vis}} + H_A^{\text{extra}},$$

где

$$\begin{split} H_A^{\text{inv}} &= -\frac{J}{r} \begin{bmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ (i+p) v \end{bmatrix}, \quad H_A^{\text{vis}} = -\frac{J}{r} \begin{bmatrix} 0 \\ t_{xr} \\ t_{rr} - \frac{2}{3} \mu^* \frac{v}{r} \\ (ut_{xr} + vt_{rr} - \dot{q}_r) - \frac{2}{3} \mu^* \frac{v^2}{r} \end{bmatrix}, \\ H_A^{\text{extra}} &= \frac{\partial}{\partial \xi} \begin{bmatrix} J\xi_x \begin{bmatrix} 0 \\ -\frac{2}{3} \frac{v}{r} \mu^* \\ 0 \\ -u\frac{2}{3} \frac{v}{r} \mu^* \end{bmatrix} + J\xi_r \begin{bmatrix} 0 \\ 0 \\ -\frac{2}{3} \frac{v}{r} \mu^* \\ -\frac{2}{3} \frac{v^2}{r} \mu^* \end{bmatrix} \end{bmatrix} + \frac{\partial}{\partial \eta} \begin{bmatrix} J\eta_x \begin{bmatrix} 0 \\ -\frac{2}{3} \frac{v}{r} \mu^* \\ 0 \\ -u\frac{2}{3} \frac{v}{r} \mu^* \end{bmatrix} + J\eta_r \begin{bmatrix} 0 \\ 0 \\ -\frac{2}{3} \frac{v}{r} \mu^* \\ -\frac{2}{3} \frac{v^2}{r} \mu^* \end{bmatrix}]. \end{split}$$

Тензор напряжений t_{ij} есть сумма вязких (\bar{t}_{ij}) и Рейнольсовых (τ_{ij}^R) напряжений: $t_{ij} = \bar{t}_{ij} + \tau_{ij}^R$. Для вычисления Рейнольдсовых напряжений использовалась гипотеза Буссинеска

$$\tau_{ij} = \mu_t \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \text{div}U \right) - \frac{2}{3}\rho k \delta_{ij}$$

12

13

14

15

Рис. 2. Расчетные и экспериментальные распределения давления вдоль поверхности для случая N_{2} 1 (M = 6 and $\alpha_{1} = 7^{\circ}, \alpha_{2} = 17^{\circ}$), 1 — расчёт, 2 — эксперимент.

11

6

5

4

3

1

8

9

10

Рис. 3. Сравнение экспериментального и расчетного распределения давления для случая № 2 (M = 3and $\alpha_2 = 30^\circ$), 1 — расчёт, 2 — эксперимент.

Рис. 4. Расчетные и экспериментальные распределения поверхностного давления для случаев № 3, 4 $(M = 5, 7 \text{ and } \alpha_2 = 35^\circ).$ Рис. 5. Расчетные и экспериментальные распределения тепловых потоков для случаев \mathbb{N}_2 3, 4 $(M = 5, 7 \text{ and } \alpha_2 = 35^\circ)$.

Для замыкания осредненных уравнений была использована двухпараметрическая $k - \omega$ модель турбулентности Уилкокса [4], в которой турбулентная вязкость вычисляется как $\mu_t = \alpha^* \frac{\rho k}{\omega}$, а турбулентная кинетическая энергия k и удельная диссипация ω определяются из следующих уравнений:

$$\frac{\partial\rho k}{\partial t} + \frac{\partial\rho u k}{\partial x} + \frac{\partial\rho v k}{\partial r} = \frac{\partial}{\partial x} \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x} \right] + \frac{\partial}{\partial r} \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial r} \right] - \frac{\rho v k}{r} + \frac{1}{r} \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial r} + P - \beta^* \rho \omega k,$$

$$\frac{\partial\rho \omega}{\partial t} + \frac{\partial\rho u \omega}{\partial x} + \frac{\partial\rho v \omega}{\partial r} = \frac{\partial}{\partial x} \left[\left(\mu + \frac{\mu_t}{\sigma_\omega} \right) \frac{\partial\omega}{\partial x} \right] + \frac{\partial}{\partial r} \left[\left(\mu + \frac{\mu_t}{\sigma_\omega} \right) \frac{\partial\omega}{\partial r} \right] - \frac{\rho v \omega}{r} + \frac{1}{r} \left(\mu + \frac{\mu_t}{\sigma_\omega} \right) \frac{\partial\omega}{\partial r} + \frac{\omega}{r} P - \beta \rho \omega^2$$

где P — порождение кинетической энергии турбулентности: $P = -\rho u_i' u_j' \frac{\partial u_i}{\partial x_j}, \ \beta, \beta^*, \alpha, \alpha^*, \sigma_k, \sigma_\omega$ — мо-

дельные коэффициенты: β, β^* — функции турбулентного числа Маха $M_t = \frac{\sqrt{2k}}{a}, a = \sqrt{\gamma RT}$ — локальная скорость звука.

$$\begin{aligned} \beta^*(M_t) &= \beta_0^* \left[1 + \xi^* F'(M_t) \right], \\ \beta(M_t) &= \beta_0 - \beta_0^* \xi^* F'(M_t) \\ F(M_t) &= \left[M_t^2 - M_{t0}^2 \right] H(M_t - M_{t0}), \\ M_{t0} &= 1/4, \end{aligned}$$

где *H* — функция Хевисайда.

Использованный вычислительный метод подробно описан в [5]. Здесь мы только отметим, что для построения высокоразрешающей схемы для аппроксимации невязких потоков использовался TVD-подход, основанный на методе расщепления вектора потоков Ван Лира [6].

Результаты. Сравнение результатов расчетов с экспериментальными данными было проведено по всем имеющимся экспериментальным данным.

На рис. 2 приведено сравнение расчетных и экспериментальных данных по распределению поверхностного давления для случая конуса с "юбкой" при M = 6 (случай № 1 Таблицы). В данном случае расчетная область включала носик конуса, на котором образуется ударная волна и начинает нарастать пограничный слой. Сравнения были также проведены по распределению чисел Стантона и профилям средней скорости и показали хорошее совпадение экспериментальных и расчетных данных для случая ламинарного отрыва.

На рис. 3 представлены экспериментальные и расчетные распределения давления для случая цилиндра $(M = 2.85, \alpha_2 = 30^\circ)$. Рисунок показывает, что расчет правильно предсказывает начало роста давления, но недопредсказывает максимальный уровень давления за взаимодействием. Это может быть связано с тем, что в расчетах точка отрыва находилась ниже по течению по сравнению с ее экспериментальным положением.

На рис. 4, 5 представлены расчетные и экспериментальные распределения давления и тепловых потоков для случаев № 2, 3 ($\alpha_2 = 35, M = 5, 7$). В случае M = 5 согласование между экспериментами и расчетами хорошее. Для случая более сильного взаимодействия M = 7 размер отрывной зоны немного занижен и расчетный уровень давления за присоединением ниже экспериментального значения из-за интенсивной волны разрежения, приходящего сюда из тройной точки λ -конфигурации. Этот веер волн разрежения также обуславливает заниженный уровень тепловых потоков ниже точки присоединения.

Выводы. Проведенные расчеты показали, что использованный вычислительный алгоритм и модель турбулентности позволяют получить хорошее соответствие между расчетными и экспериментальными данными для осесимметричных течений при различных числах Маха. Модель Уилкокса работает достаточно хорошо до M = 5 без каких-либо коррекций на эффект сжимаемости, но для более высоких чисел Маха такие коррекции необходимы.

Список литературы

- [1] DELERY J. M., PANARAS A. G. Shock Wave / Boundary Layer Interaction In High Mach Number Flows. AGARD-FDP, Working Group 18 Report – Step 1, Subgroup 1 on "Viscous Interaction", Chapter 1.
- [2] KNIGHT D. D., DEGREZ G. Hypersonic Experimental and Computational Capability, Improvement and Validation. AGARD Advisory Report. 1998. Vol. II, No. 319.
- [3] MASLOV A. A., SHIPLYUK A. N., SIDORENKO A. A., TRAN PH. Study related to hypersonic boundary layer stability on a cone with flare. Preprint ITAM SB RAS, No. 16–97, Novosibirsk, 1997.
- [4] WILCOX D. C. A Half Century Historical Review of the $k \omega$ Model. AIAA Paper 91–0615, 1991.
- [5] Борисов А.В., Федорова Н.Н. Расчет турбулентных отрывных течений на основе метода повышенного порядка аппроксимации // Теплофизика и аэромеханика. Т. 2, № 3. 1995. С. 253–269.
- [6] VAN B. Leer: Flux-Vector Splitting for the Euler Equation. ICASE Technical report No. 82–30, 1982.